Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.11.2.tar.gz (56.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.11.2-cp312-cp312-win_amd64.whl (43.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl (35.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.11.2-cp312-cp312-macosx_12_0_arm64.whl (29.5 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl (36.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.11.2-cp311-cp311-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.11.2-cp311-cp311-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl (37.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.11.2-cp310-cp310-win_amd64.whl (44.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.11.2-cp310-cp310-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.11.2-cp39-cp39-win_amd64.whl (44.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (32.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.11.2-cp39-cp39-macosx_12_0_arm64.whl (29.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl (37.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.11.2.tar.gz.

File metadata

  • Download URL: scipy-1.11.2.tar.gz
  • Upload date:
  • Size: 56.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.2.tar.gz
Algorithm Hash digest
SHA256 b29318a5e39bd200ca4381d80b065cdf3076c7d7281c5e36569e99273867f61d
MD5 27baf613b6cf3f9600a05161f132151c
BLAKE2b-256 9cef87a5565907645998d7c62e76b84b0ca9f0b7c25cd433f5617a968051cec3

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 43.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4447ad057d7597476f9862ecbd9285bbf13ba9d73ce25acfa4e4b11c6801b4c9
MD5 b1b2f01e007b05aad3461f1e454e2c57
BLAKE2b-256 532cfbccc145c70da7ea073763e97f2e20c9897fc351958c2d035cba9dce6df6

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea932570b1c2a30edafca922345854ff2cd20d43cd9123b6dacfdecebfc1a80b
MD5 170c392f56185e9c8336f3501e38a675
BLAKE2b-256 0fdff2d6440feca0f76c7ee42f15d70e9688130fc688b783e84953386adf8abc

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 542a757e2a6ec409e71df3d8fd20127afbbacb1c07990cb23c5870c13953d899
MD5 c6eb39fbca24c96ea91f45ed4694e16f
BLAKE2b-256 c2deefd780a29d6e600f83164837811cbae7cd21a0c3a296080486728313dbbe

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8425fa963a32936c9773ee3ce44a765d8ff67eed5f4ac81dc1e4a819a238ee9
MD5 ea58c5dc26dd439a19bf0b34eca42713
BLAKE2b-256 25e69bd9ca158e7dc8f9d3689cb90a20de5e33ca1546e999d92f50513345378a

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ac74b1512d38718fb6a491c439aa7b3605b96b1ed3be6599c17d49d6c60fca18
MD5 5109008341246dd63e170b550628f6b6
BLAKE2b-256 2f053c047ca15a565291291e1459dd0ebedacf46474607528a7120085c5b67eb

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa4909c6c20c3d91480533cddbc0e7c6d849e7d9ded692918c76ce5964997898
MD5 2cedd23dd78ffb8eb8ef09ce24f68b21
BLAKE2b-256 e58aa1856c7dc72d744ea04a18ea83a73bd0ce46c89d425ef75145be8a3bed7f

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 44.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f73102f769ee06041a3aa26b5841359b1a93cc364ce45609657751795e8f4a4a
MD5 5ea7ab2643e34a106b0b07eddf50f96d
BLAKE2b-256 0615e73734f9170b66c6a84a0bd7e03586e87e77404e2eb8e34749fc49fa43f7

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90d3b1364e751d8214e325c371f0ee0dd38419268bf4888b2ae1040a6b266b2a
MD5 d59f8140d6eb9052c1958a21d9fa97a9
BLAKE2b-256 e597e908314f5ab13aa263980d3f6bc897f8a0df25f5b47c67a8d1aebf0eeeb4

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3aeb87661de987f8ec56fa6950863994cd427209158255a389fc5aea51fa7055
MD5 5cccac1aaca9a7a9701212b523771486
BLAKE2b-256 0ea08606a7eef659f3d5f79d9efb92eed3ed1243178f4ae962614e1b202935a6

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b133f237bd8ba73bad51bc12eb4f2d84cbec999753bf25ba58235e9fc2096d80
MD5 a8a8b98a8162f5684597f4852a494f9a
BLAKE2b-256 e65c4cf8cc5436017ccefc6cb22afdeec80d602f8c9d956edaecc0baac263905

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1342ca385c673208f32472830c10110a9dcd053cf0c4b7d4cd7026d0335a6c1d
MD5 fcf37aaee7f567daf43e8f613bd80ef1
BLAKE2b-256 2a1262804d63514ecd9d2ecb73497c3e38094f9139bc60b0353b653253d106bb

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d9886f44ef8c9e776cb7527fb01455bf4f4a46c455c4682edc2c2cc8cd78562
MD5 e08a50bf4c113a1e310bece42410a01f
BLAKE2b-256 1d775e660d211906becd9f8e13e00d828f5e68b5e66d9b956f4646bb4882c68e

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 afdb0d983f6135d50770dd979df50bf1c7f58b5b33e0eb8cf5c73c70600eae1d
MD5 85c785288036b94826c2c564116b5e6b
BLAKE2b-256 7003485f73046134400ea25d3cb178c5e6728f9b165f79d09638ecb44ee0e9b1

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d2b813bfbe8dec6a75164523de650bad41f4405d35b0fa24c2c28ae07fcefb20
MD5 de9afa37cd0c3654a5a4abe2a29548e4
BLAKE2b-256 1f2672a67b2c738be9d42b86bc79abb3d38026b2dece9d8a5321a7bde6cccefd

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d690e1ca993c8f7ede6d22e5637541217fc6a4d3f78b3672a6fe454dbb7eb9a7
MD5 cc681011c84e9eb051a43ea895cf4073
BLAKE2b-256 a8ccc36f3439f5d47c3b13833ce6687b43a040cc7638c502ac46b41e2d4f3d6f

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e367904a0fec76433bf3fbf3e85bf60dae8e9e585ffd21898ab1085a29a04d16
MD5 6be4527b35d09313ce2802f99f71527a
BLAKE2b-256 a799370831a3fdb4c0c4187c75709bf298d3784b0a9a8574f50653ede3ab873d

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 95763fbda1206bec41157582bea482f50eb3702c85fffcf6d24394b071c0e87a
MD5 3a375f4efced07df10e2990d1d73c811
BLAKE2b-256 63b90344b60e7c577eb637785841222fde8ef7928ec4797be1a34ca39bfe31dc

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b997a5369e2d30c97995dcb29d638701f8000d04df01b8e947f206e5d0ac788
MD5 7038aeb6c007e7114afa2539135bd142
BLAKE2b-256 65da4d0dfd29379c8ee3ba54b19249f673cc98448e0fd86170339fb02031f0e9

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.11.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 44.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.11.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c91cf049ffb5575917f2a01da1da082fd24ed48120d08a6e7297dfcac771dcd
MD5 2e2b1fcf6ea9c311576700daf18ccc19
BLAKE2b-256 e9202d0561ab54d857365926c5b53538369a7b8d6ccbffaca509305b074028cd

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f3261f14b767b316d7137c66cc4f33a80ea05841b9c87ad83a726205b901423
MD5 268340a51245f23b81a3f40dae5819a1
BLAKE2b-256 3ca8de47d1e9830ce0bb3adb11a99f5286535b8c070ea95ccf422047d3e8289c

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10eb6af2f751aa3424762948e5352f707b0dece77288206f227864ddf675aca0
MD5 4f3ea3d87dd0bfd2816583080b7e3934
BLAKE2b-256 a3d3f88285098505c8e5d141678a24bb9620d902c683f11edc1eb9532b02624e

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 214cdf04bbae7a54784f8431f976704ed607c4bc69ba0d5d5d6a9df84374df76
MD5 f6621b3355fec0fe58a37e463a08fa0e
BLAKE2b-256 ab823dfc4e1e7f3ee5c28ad289bba5fe542ed5f98acc7d56a52c8eda18a438e0

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f28f1f6cfeb48339c192efc6275749b2a25a7e49c4d8369a28b6591da02fbc9a
MD5 900b0591520bd3864b34fd619b0a500a
BLAKE2b-256 7731b063f21370c6050a663aae5a9868d2fe112b21caeface3c248016dfea092

See more details on using hashes here.

File details

Details for the file scipy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0620240ef445b5ddde52460e6bc3483b7c9c750275369379e5f609a1050911c
MD5 6d7de323abd9b33f53ea77b0915c0e5e
BLAKE2b-256 03c35162f7d23a12c62cf0630f6cce20932f166fca7cb5513ed9af56b5618ba6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page