Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.12.0rc1.tar.gz (56.8 MB view details)

Uploaded Source

Built Distributions

scipy-1.12.0rc1-cp312-cp312-win_amd64.whl (45.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.12.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc1-cp312-cp312-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.12.0rc1-cp312-cp312-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.12.0rc1-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.12.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc1-cp311-cp311-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.12.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.12.0rc1-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.12.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc1-cp310-cp310-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.12.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.12.0rc1-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.12.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc1-cp39-cp39-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.12.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.12.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.12.0rc1.tar.gz
  • Upload date:
  • Size: 56.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0rc1.tar.gz
Algorithm Hash digest
SHA256 93483e58d13e2b4cbeb70f0b8aa01d19baddfd2e7f5f1275986baf3c0850e5c5
MD5 1fc628fb1bcf3ed7736c7b02ae81449e
BLAKE2b-256 ace5412d60f68841286c7c11a3790dc83545647b618e7ed006bc3630667d2a8f

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7914b4a79237a20988369c77d01ba974d85795c8c84c6ebed72f3611765245ca
MD5 37ac6bf2459338d8fbca3bcd1f48f445
BLAKE2b-256 a2d3365603d35de935d34e9eea57a0af4eb9223417adfdb231cbfb4d24409931

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b0113b938209293a1d4fbdd1fb07a5ac02314d9abc538503f38cd15c83a65363
MD5 2a7700fd76aac9c4682fa7e21fcff7fa
BLAKE2b-256 354983c6fccffa285320147a146e65b8408b266619cc165820dd593e683ac577

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8786144accdf673ed3b7d01510a78926eb95f7d1bb339a993fdd0a22e20f1f64
MD5 e336ba0a1460b48ce0d2a0204d8a007d
BLAKE2b-256 3e49826e4d0d72cec34bd5c22ba057a4b4bb9ecdfaae8a1b1fc7c2b4aee634f3

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36589310180e55537f0a42444bfc05f388155f3c9e75644fc9fabc8ea05351b4
MD5 fc39a4e802933ee434b96189961ac60e
BLAKE2b-256 6b044d02e148859a388c6a6f9237df047d5ea33f869e6b589f9bfe80db6c732f

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 cf2b879f1e81c16bfd40dd61ede0774467a07cadeaa7ba93ff52abf85e4358e5
MD5 8aeba1ecaef49cc515345cca9959dc0c
BLAKE2b-256 bf93718938722aa58bebddb008c4f86eceacc7346a42e842dd3f0a5bed686805

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfd39fa37239331711194c75b57230333463630a9885385216939e9327fb3db5
MD5 9d0ef5585aa4cb8e4df4bffc634dd293
BLAKE2b-256 3f873bc6c659025305308832f9f0424c08b72edc6eb8d6a009e5f5c96f704661

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7bfba81e6da57a5fea65c7450de8cc043f4ac95966183c53b8ce379957f33d19
MD5 fdca37067f8abc153a582e55b2efb4bb
BLAKE2b-256 0e3361cb266741713dec025fedd34fd367fd75806035d7908fb163269ebfb58e

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6ef9890afa855f20a77c9fb83db7f21366ff2fd4fbaa4204e05dc7680725f5f5
MD5 43c7f91c847f451687d6159352fb1d25
BLAKE2b-256 dfc17efaef416271cca34e9d5b26fe3619e9b4ac34281ac4497faf1b29279168

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd19dff414b7c07b711b4bb584728d3803f8a09aa31e13ed137830f27a5e8dd9
MD5 4a86f000117fce12236f4ff8488f99b3
BLAKE2b-256 3fdd4c331c087d11cf5c3ceb21d78d81c852e93c32b4c3d367f519032558dd46

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6b4455c11407996c454f05b02a51129aef3a7f92d5f8c2d01b0af496716e43b
MD5 f5223a5c0a835793fe06fab073713f29
BLAKE2b-256 3b148eb94e9b96ffaaeecc5822543c742c0b2581b53ac7109b648880947230e0

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 59f121fdc3c9e5a21e94029f4e60f0466e3c81b1842114dcbfa6289e33f4d238
MD5 88cdfc9aee1c24b2476f650f69135cfa
BLAKE2b-256 2a33ab25acc002eb5e163f15efb610e56c37675c3892edb7c863ade045a72917

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4056fb90600d94f598caed6a3465e9223fedd15b76bf6ab71775e3bf2bbc5d1
MD5 8194c755ce714ae1cba2066ce5af9281
BLAKE2b-256 cfc5e487716e990b0430c4ede68dd61d435b115839cc80135d29ff972a1f7931

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7aa5d8794955db85ce3806fcbacd15a363472ddd3be776fa0deb0c01896b67af
MD5 1cefe0b5202049e33ecd2ac0b7a1928a
BLAKE2b-256 140086a4215f8e60d0368b3fd16affc8ca04203575962bb4948adcc8f7706ced

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 059bf15669d30f4e105aa283fb7fac8fa2f9a6de8a3939422bad265a674c537b
MD5 3de1ecf1c2e32460303f3d218350b03a
BLAKE2b-256 2402e8aadaf55a8fc6226337e653c1a434deab8223db27ce2de007f5918206d7

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0817f36403a03d37a385d9931463921c348dfb86f4051c981c49c00a3b56809d
MD5 43373136c7b91834822ead0b4de2b965
BLAKE2b-256 bab4566c020cb54774581779e2a061f6b21681ddf687fa2fad25410bd86ad1d3

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f93c6febff595fad1f25c0303061a79a8c6e8b720ac76a9595b6b3523bea7fd
MD5 9715069ca0e76b84b73688905a84a3f4
BLAKE2b-256 7c0979bb8327d745643eabc9a84d23e170ed7f10d72ca77eea326f23353f14c0

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 91c886f0c2fd494da4866e4e0be33325b6e5c6f8d2a7bf6eea2af7782b3f89a5
MD5 03a7bf978ec11435d71030d621d40d9e
BLAKE2b-256 edc2e2ac46c39cf435792bf1cbb89913cfd5de54c89d97f0ec60c93b865860ad

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3615179981dbf46acfbb24f5883e79fd6dff2984799139ce674125f1271f9f4b
MD5 885907212172fa7ad0fff3170f2b4f13
BLAKE2b-256 0fdb07957e58a05ef140c3457f994ddbfcc3c347beac927f23161596bcb4339e

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6697133d20770ad289a6a23080532fd269f1ac9e9c93c2e84f3b1f1d60ff510b
MD5 30725e963b6781e1b1ace788b9d17272
BLAKE2b-256 999378a6adff5c6369d17b55754006ab7794694b083c7e5eee0f06ca31d3b848

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d8f574b692f5bcd204d8e23bebf113ec6ade2bb5724ee5ea7e81d5875442a008
MD5 2d3eca17ab5b07f5b6e8daea86c0d2c0
BLAKE2b-256 d454630eab4a7c56a6483d3624385f715d147e1532cc9cddfa174aa1348b808f

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b1f66bcafffcbd1bbf52796fb1fe64d077be65792058b88eac7f1e9b51b51d8
MD5 6690d768b953edebf48f99e743074a7a
BLAKE2b-256 5cef59f661767c1281e6ced153fcd67470d7e8742b8525d3c05dbd3d50b259de

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65cb554a52be1ddd288f154c496e73baca2411054956ad6b073343f8428e025d
MD5 9cc67b976369e068de6dcb2726ea06e5
BLAKE2b-256 ad4aa48e2093ee790063d99bc0ce33b6d7b6912bd23592c373c1bb4f54cd2d0a

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e4418262eb9937af44236b677b33d378631476282bd3234209d424a5aca3c4fc
MD5 6ff21d2ed00248f11170d0926b8a9141
BLAKE2b-256 67c4dfbfd35bec99ad46969a0cfededab04f778e348def9a1a72603435a3001d

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5b7614be617716dec97f5865a352f3a46d50a1aa509d6c273c0f19a30b69030
MD5 cbac45dcfa4e0f2f1f21d7e34a713141
BLAKE2b-256 d09cef9274ecb266d45dc00accba3ce1524094541f9daa69015286ace64124aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page