Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.12.0rc2.tar.gz (56.8 MB view details)

Uploaded Source

Built Distributions

scipy-1.12.0rc2-cp312-cp312-win_amd64.whl (45.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.12.0rc2-cp312-cp312-musllinux_1_1_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc2-cp312-cp312-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.12.0rc2-cp312-cp312-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.12.0rc2-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.12.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc2-cp311-cp311-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.12.0rc2-cp311-cp311-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.12.0rc2-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.12.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc2-cp310-cp310-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.12.0rc2-cp310-cp310-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.12.0rc2-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.12.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl (38.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (34.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.12.0rc2-cp39-cp39-macosx_12_0_arm64.whl (31.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.12.0rc2-cp39-cp39-macosx_10_9_x86_64.whl (38.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.12.0rc2.tar.gz.

File metadata

  • Download URL: scipy-1.12.0rc2.tar.gz
  • Upload date:
  • Size: 56.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0rc2.tar.gz
Algorithm Hash digest
SHA256 3054d36d182ae41f690e72837f0d69779b9fab8aa02af424a42673f4e4a07931
MD5 8a7704270f53b8ca5a03b43f177e79e5
BLAKE2b-256 fd3b69060d528565fd558442fcaf8aab745a264b3153f74d7b3f13461eefc947

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bac6d672e087ceeccbeec841bd3fc4290dd712076b0bea7ffed23efa785fec7c
MD5 eb22f5107794d47a8de221dc3956e3c8
BLAKE2b-256 baf6603818a8c1c146e3ffee345a51715e7b60ae5fff2f31725c57db83131018

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 027a2bd5090c4924dd2b9196533b1be97d8f09bf8a1f520c66f341bd745db139
MD5 97ee9ed0065ff753abc304fae7fdedd0
BLAKE2b-256 f4a21b5f5204285b953cfe49ed0c41ae09a8b66ddb9d3c2c8bb98889509cd0f8

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36cfa3515bb49098368c7890761af5c2334b49c7f54e4ecca2e9b2488322d458
MD5 22bec8ab7a358060e4c1014d25192d80
BLAKE2b-256 5eab657989e611b4337b847f348df81a3c4329a3ebbfdb245f920cd7ddbae903

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6fb89cb3849ca454ec8d0489596e42fd256cc7d7ab3e5939238163ce8c4e942
MD5 953378ce29dfb58faa678efb36e85118
BLAKE2b-256 ce889e0f26c5f0c8bb8124aaf96c319085b6bfc6d312e9a866141cd92f448dfe

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e5c28c9b18725200b6b9754039e3b23f7e9947b5551077d9cc95f243fca9b769
MD5 114616a851ec0ca243b8176e7959346d
BLAKE2b-256 7c080516b67e344cd606d34281723f7a27791936e22e4b04dc28f7f2d53df46c

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 694388d6763af08e3c29d87ec84839934a13dc19b31bbeaa1484c3e9452b4aee
MD5 a7f93100af21af0998a57125cf25e82d
BLAKE2b-256 d4261be74a2045526d2cfa8b5319b5fa96aa072cb3d73c10310306e59db5fdc1

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4a2d7dd8cc6f98fbee502b1b18280e86043cff6f1bf18d4cf2bb7f23ae3ba520
MD5 a6dc5c0edc64394eb9331b12c34cef12
BLAKE2b-256 af62a81c3b1f4290512177051b77717af7554186dc4af55bd5f3e31ca6daea2d

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 97e0cad281ac6a86a3f88d25b8c543e3426f8c6f88a2e40055b5e0505947748f
MD5 e26130f69af3e660d7a24eab2d5fb208
BLAKE2b-256 119d08e96b101a4f93de37efa50a23f573779b3ae15654c0ce589032d4f28fa3

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93d1c968e00229494cfd453fe1fb298c44647db67f038b845fc8a249e0a84168
MD5 fa94fc63ca0377e7e9fe86391e599377
BLAKE2b-256 e9e29f59e2ea9afd2215b0ca7019dcb3ee571ab58508e19e10062ab30b7e0451

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90b01737edbad94bc0b0e7ffc0ff87d73f5f459d0a34bff03b31453a2e911804
MD5 ed544412afadfbdd52ed75e18862d5d2
BLAKE2b-256 4577745c9083f997076d4da474530c60fcf496e2e8884ac531f983a816d35096

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f07a1e36b0793d04bb91bfa672eff2a00770838edd1aa31d1926d4b3c661a003
MD5 2585cfbc29dd9194bbdb9ccd2a6ce5d4
BLAKE2b-256 56e960e89847f657ec6e3746e449d6bfab695eae321589ed22dc0b5402ebbb74

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49136afe4f06981f36053850f6184f3e9a5d4e2a9009cabd534ad312ecba8b6b
MD5 7020fb43647101b18afcee6e6cac7f63
BLAKE2b-256 dddb0e2ec8fa3fc65c861d77711e1c7be6a66e763eba4ec3dcb4a614d9ea2ad1

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a967d58d9fa7aea5c8811dd312605a25771bd4fe4914d63239f7f533bc34386
MD5 fd841e2d2a26fa9290f70f970f3797ad
BLAKE2b-256 a863c9cf108f5f43824ef878faedc69b77dc4496cd76721dd5f57db011a64583

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 795b11d0a6163045e06ae8a6a168bba29746da9e77a66dc65b9760d70cde7d9b
MD5 c77b175a13f2daddb0aeb9752e4edf80
BLAKE2b-256 fb32148d6a3aaaad8607ef987e06caa37279505e5005393857af1d2fcc2e1486

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f12c3c5b8bf23c79957ce29adccdb5bb6b86f205c5a5bdb814b47732660dede7
MD5 931e8e217adaa56d7f3628b9d6f9863d
BLAKE2b-256 3f87b7ba52cf0af694d1870d1be8c3149915a5d08b95526c0863378b3cbc3b54

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56445914193dc058ecc29f658da16120e8f86addb61833df7c49eefb7a52ffd0
MD5 aa697ac80a1cced45890089f36d1835e
BLAKE2b-256 986720b169cbed033eb6e36e08ffe67296559b0a5c2b1aafe1d597b98ac79e53

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0072285f331ee0dd8febf3b303e6142968658fd76b0067a14a93a3f128d963ec
MD5 74b965206a3db16ba76f81835e8f2173
BLAKE2b-256 47ccacfeef39b830eccf4b3b469fc4d4f78818bda9cd4e82d8dc25300319f935

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca2c97e5168f7d8abd3bf7c97173a31cb11b9e4ea13f2e5a347116d48fcb1f77
MD5 1f66562acf5d69b2921be8cf06ea4655
BLAKE2b-256 190301323f71b6544d9546ded138e7c71dfd35ffa0af25a06592cfd36bc40c90

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.12.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f51713460369a6d4ef8a7a4d6c576a93f66e18fd8ef8372a0c9ab29483ce55fd
MD5 b1c44469cb2805ccda1a461b0ba9de7b
BLAKE2b-256 c34b142b510ae378a31c964a8b1c07b9f666df7d99dcd342b92b116a97de4326

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9c16b795e9d50404cabd8eecc1d6ee764b7cb68f5397970042db453e2ad92199
MD5 591c22eeff6121cbd92063eb001eb5f6
BLAKE2b-256 45826481eb0c433c3c0eb2e3388ff7c76d5498f1ff27b02ed551996c64a1cbb8

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 351b28ab4f781c86aa9bf31ea3d95d37309827451c02c2b92e682473115deaeb
MD5 fe878e467e59ccad86816bf98fd1b02f
BLAKE2b-256 cf50930db893ab48f9732e3240e394c2cff36ded8ab7f4fc254bbcc8b55a6cfa

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97d452350771a278d0a61908d85c1ef423f4afaf4c949bf106bae80ea516785c
MD5 20e0eae99bd226ba62813b097c988a13
BLAKE2b-256 078a8ca2dcb80ee2ba7e1be15e65d3f1017f5e60c675a70edb4f5d612357f711

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 50b7fbd78e7dd4de3152c069d63c0ee27dd5cb38e29dc51b80e836c17442bfcc
MD5 d12bcde6a138a98f14d6ecc343054be0
BLAKE2b-256 8348fc1ccf674eb46eda123760adc194c76a454d1a8b7eaba4ac4444c0e26555

See more details on using hashes here.

File details

Details for the file scipy-1.12.0rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.12.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c24b1dfadc785187c63b8216d1520c064a934fd5730946195444a5cd7a16d6a
MD5 94acb0de5b6319a4cd1817a4b13c1d08
BLAKE2b-256 e0e89ff6979ffe28f725058df2f7a7c8fef0e849ad003472a60c2955afef2a29

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page