Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.13.0.tar.gz (57.2 MB view details)

Uploaded Source

Built Distributions

scipy-1.13.0-cp312-cp312-win_amd64.whl (45.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl (30.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl (39.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.13.0-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.13.0-cp311-cp311-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.13.0-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.13.0-cp310-cp310-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.13.0-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.13.0-cp39-cp39-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.13.0.tar.gz.

File metadata

  • Download URL: scipy-1.13.0.tar.gz
  • Upload date:
  • Size: 57.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0.tar.gz
Algorithm Hash digest
SHA256 58569af537ea29d3f78e5abd18398459f195546bb3be23d16677fb26616cc11e
MD5 6c6c404e2cf783374587c9f012d622bc
BLAKE2b-256 fba3328965862f41ba67d27ddd26205962007ec87d99eec6d364a29bf00ac093

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 45.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8930ae3ea371d6b91c203b1032b9600d69c568e537b7988a3073dfe4d4774f21
MD5 6cc76fccc3fadb2f45b54750bd394c5c
BLAKE2b-256 ed6fba2b2f14391291dd47d17da78c3ee644fb3a2fd6bddde664381c1968eda9

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 109d391d720fcebf2fbe008621952b08e52907cf4c8c7efc7376822151820820
MD5 29a4818ff5dc9cb8243eb9e63f05eeb3
BLAKE2b-256 bd1a62412a225a73b204066b84792bcacbf743baae37d4982a25139212d0656e

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e7626dfd91cdea5714f343ce1176b6c4745155d234f1033584154f60ef1ff42
MD5 8b74b0eb2dcfc131f3c48f70866963aa
BLAKE2b-256 878c97e545034c94d0bbbc3af3202551c3d6020e5f8d2ee37ebcabd9a2048174

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bf9fe63e7a4bf01d3645b13ff2aa6dea023d38993f42aaac81a18b1bda7a82a
MD5 ee6b4ed821129fe28bd4ef3e0a0f6d34
BLAKE2b-256 a55673d123ede2d54395b0de721a439e1bafd345f522694e5faa917fda39c6bd

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b2a3ff461ec4756b7e8e42e1c681077349a038f0686132d623fa404c0bee2551
MD5 213bafe99355e2b44ac7f2b59d12aad2
BLAKE2b-256 a1728d2b7815d754e52b31ebcacf93111581f6948d96910a1a665b8cefc5cfe1

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0de696f589681c2802f9090fff730c218f7c51ff49bf252b6a97ec4a5d19e8b
MD5 0cdbcb45b1962bb5950490d0ddb83a18
BLAKE2b-256 fc4e67541c3d681bb6fb96acbc3581fb155c881a0d993d0aa3e8708493b70e79

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a2f471de4d01200718b2b8927f7d76b5d9bde18047ea0fa8bd15c5ba3f26a1d6
MD5 c27a20910b7e50ecd098ee78aaca7b6d
BLAKE2b-256 d4a1d4adf25b6d2bef8d0ad1682829dcfcba97f3f96bb5b6f137bc3e41003cc7

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4dca18c3ffee287ddd3bc8f1dabaf45f5305c5afc9f8ab9cbfab855e70b2df5c
MD5 4f3dc8357d50af7a7203afe66c4a44c4
BLAKE2b-256 6a310777a66bb99f639fa0f0d1eeedcdc55df39e79f5357ad35917889c55f416

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ff7dad5d24a8045d836671e082a490848e8639cabb3dbdacb29f943a678683d
MD5 0d9879d580ed7b290123f0c7fe6eeb6f
BLAKE2b-256 e8fbe5955e2ddbdf2baee461eb53ec8d0adedd20a6dfc5510ef8d5e7e44ba461

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b5acd8e1dbd8dbe38d0004b1497019b2dbbc3d70691e65d69615f8a7292865d7
MD5 629fd3392a2f43e8ae365a1c86a5dd5f
BLAKE2b-256 c9d614174fdbc0fcca5d026e0e3686084a5cf9b1b0836504c73999fb8cecbc71

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5e4a756355522eb60fcd61f8372ac2549073c8788f6114449b37e9e8104f15a5
MD5 e6be06be899b797d029ba2e305dcd282
BLAKE2b-256 51b6188c8974d747b2998d672040c5b62a635a72240c515dc4577a28e1dedc80

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fbcf8abaf5aa2dc8d6400566c1a727aed338b5fe880cde64907596a89d576fa
MD5 dda3345a46e60e1b6351dea46edc8887
BLAKE2b-256 bee3236639c51636ec7e678f2aa608fe89acb9d02ef64e1fe1d8eb40373bc62b

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1d2f7bb14c178f8b13ebae93f67e42b0a6b0fc50eba1cd8021c9b6e08e8fb1cd
MD5 a71cad9f14c90e8c3484df00928b2e76
BLAKE2b-256 c5970894cf6226508f9c8300447641f8f63d04d90617e27f0e6253d1ea299196

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dcbb9ea49b0167de4167c40eeee6e167caeef11effb0670b554d10b1e693a8b9
MD5 53fce4e4f9e29073d385a61f39b50f15
BLAKE2b-256 302c3f821e2f1e5eb4a9717ad79d5fa45ba6de045b72d72ea1ce5914fee5b922

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8434f6f3fa49f631fae84afee424e2483289dfc30a47755b4b4e6b07b2633a4
MD5 464e4d56d6e9a04025336b3e0d7c81d0
BLAKE2b-256 b99d39dbcf49a793157f9d4f5b8961855677eb4dbb4b82700dcee7042ad2310c

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05f1432ba070e90d42d7fd836462c50bf98bd08bed0aa616c359eed8a04e3922
MD5 b00f0219526eb24c79f66307e5ea246c
BLAKE2b-256 38ae01a7d6e7dc129d139ce9294218b98cbed0a5ffb5636b6a91f92e4b07a2d7

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 22789b56a999265431c417d462e5b7f2b487e831ca7bef5edeb56efe4c93f86e
MD5 00f2c0707f2f495627d692a599ec206d
BLAKE2b-256 ec44dca6598820ba4ebadd6fd7e2ce7f7f753882d5ae025398d2cdf44a17105a

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba419578ab343a4e0a77c0ef82f088238a93eef141b2b8017e46149776dfad4d
MD5 eaf4cecbc2d990ed8ed3d3ad822f9956
BLAKE2b-256 375dcaf936934535fcb5c5e2f3f0f6730e073ee0a4ce329f7b0332869e867d47

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 45c08bec71d3546d606989ba6e7daa6f0992918171e2a6f7fbedfa7361c2de1e
MD5 e5b9353e8c5bfdf1c4fe5466be8f53f4
BLAKE2b-256 4ea135664874701a1a18d538dd2b0338c44d13858e16b0885f85e1f5a7fde88f

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33fde20efc380bd23a78a4d26d59fc8704e9b5fd9b08841693eb46716ba13d86
MD5 10211e3f0b2a95abad7deaf5ac8cbf66
BLAKE2b-256 d69a9f465c0773a3e9465adbb6472c2fc9d37db58271d2db6ea564a810abd2b7

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28e286bf9ac422d6beb559bc61312c348ca9b0f0dae0d7c5afde7f722d6ea13d
MD5 20f122366a20f7c9790d087b7d9507e1
BLAKE2b-256 c6baa778e6c0020d728c119b0379805a357135fe8c9bc87fdb7e0750ca11319f

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09c74543c4fbeb67af6ce457f6a6a28e5d3739a87f62412e4a16e46f164f0ae5
MD5 fd42c17c7a08ac681cdd59f86de23fe4
BLAKE2b-256 408dfe407ea781f6d7266aabd1994252e5163a3591bd2607400b1f30c722cdba

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ac38c4c92951ac0f729c4c48c9e13eb3675d9986cc0c83943784d7390d540c78
MD5 627c3b243079c8b59e8a7be0ec40963c
BLAKE2b-256 b233cd6ae14e861e3f1ea1440c62bd3d16cc3654d77d79666f348ad0176afde8

See more details on using hashes here.

File details

Details for the file scipy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5407708195cb38d70fd2d6bb04b1b9dd5c92297d86e9f9daae1576bd9e06f602
MD5 1d5a5a1a174ba93388c4fe91d5d6e2c9
BLAKE2b-256 af36a19e5b360a93ccf06f79f04b480720d0f0a1ebea1094f696060694566213

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page