Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.13.0rc1.tar.gz (57.2 MB view details)

Uploaded Source

Built Distributions

scipy-1.13.0rc1-cp312-cp312-win_amd64.whl (45.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.13.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl (38.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.13.0rc1-cp312-cp312-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.13.0rc1-cp312-cp312-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.13.0rc1-cp311-cp311-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.13.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.13.0rc1-cp311-cp311-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.13.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.13.0rc1-cp310-cp310-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.13.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.13.0rc1-cp310-cp310-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.13.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.13.0rc1-cp39-cp39-win_amd64.whl (46.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.13.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.13.0rc1-cp39-cp39-macosx_12_0_arm64.whl (30.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.13.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scipy-1.13.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.13.0rc1.tar.gz
  • Upload date:
  • Size: 57.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0rc1.tar.gz
Algorithm Hash digest
SHA256 72e29d3dc0a00fe6cb71d3210f30b3f8f63e6bdd456c6218d25bc702eb10a8c9
MD5 897f2772a6b5498bacf243a62a64402d
BLAKE2b-256 dc239948855f3227e8327713a103df97a32dc0109aada23e0fe3df3429ea2e55

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a6cd4131837d9ef88f88128bcc76be8993ae2fb221f7aed41e311cd4aa735d6a
MD5 1b0ed9ec025c40732aa3328f5bd2b907
BLAKE2b-256 48ca922af1a9ead195f2796f9109b65319158cc8f2e5a0d9e4bfbe45a26501b5

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa016fb9aae8e13c14b5cad6333e0deb504caa374a587c7e30d87b132973f7a1
MD5 dbe84f539a558a37a50315bff29ae3fb
BLAKE2b-256 d304bea8dd84b31793e894c7429f80801660addd5b3d7faeacdc3e548968da05

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 429c3e13a018629a426777c1f7f2fcec7595feddcffd174a7caacb6940142a4d
MD5 9bb2760a3237fceae844ddae6fa0d6fc
BLAKE2b-256 db2f5d6c548b4087490a27e256dcf03c75aff2c23518610a451a1cd69c7a8922

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc9ddc5346476860a5044ee461dc3537664bb9e43394dd7dda33793c97283454
MD5 a690bc4ce1427e8769f33be09d69caa3
BLAKE2b-256 52f473fd49b9f0911e5c84ba26b4d8a30e5fc931f4e8f8771a5537e8ce82f969

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 283f8494ff86ac15bd098f8fa33091f229b95459f89f774fc08669d7741d90c2
MD5 8902409f71b0a6e43626b3453c1abf53
BLAKE2b-256 fea23f633c84a333cdbba16f4cf1302aaa0e94a67dd9c8542e3e120e0b3b229f

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fd73593e7e0a39d74e45b4b4604978dd9986d67da387db407268765323e6146
MD5 576fb4bef1231bb20f129670bf05e5c8
BLAKE2b-256 1e25e57029e71da8be14c50913d7830b2a73d0e1409c0829dc16978675782d6f

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3b4b6d7a0f71ba4bd9f070de6cc806ae48a69abebb31c80b9898be92290aa6d3
MD5 2806fb3f7ae1811a0fc849a010c70ce7
BLAKE2b-256 9a5a08b912be3a324f1ad3bd50a10c560ac82bac78853abfe25cf84eae2cefcb

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b7425a9e494bb5526da5993b9007be2ca431685c2fd4997f7c87df1008555aa9
MD5 f789d9dbad220ddeafc71b21e07f9763
BLAKE2b-256 e35d1cefcbb18aa4f4b52c74a1fe9f512a091ffa443256205918e5702654ea50

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8b72001a502a41bcd5099589b6f80bbeca9792fc206aeab48c66395bacc7973
MD5 437af4fe8d66011eed46bfbc76db2681
BLAKE2b-256 b218b079e8deb23db70370e890fc33c972d16f09af0726e53389be08c7fe3fae

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e5ef578543729fda61679bdc569b3b0eacce56410624ac35ab4380d1830d9df
MD5 c209220675f9eceedbc7ad58a3b15241
BLAKE2b-256 bfd8bdff5e27eb61c26f97fa46461dcdf252727d0cbdb1e7f5686a6757bab09e

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6dee4a36eb7205c54a7546d0203216cf755a296111f5f0c7a86007d79f929299
MD5 47031a295b88ec584f5b73e8bb012ec7
BLAKE2b-256 aec029b8d734d250af108ce4a56330205d05fe0069d9ef0f3fb3b1431da5021a

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7acea7300f457ba5d9777ecac1d3b61a23d9dfbfaa2022b6afb7330b371d736
MD5 099c537a65e4b720e6c27cfb4e04f1c6
BLAKE2b-256 f6f2af71fadbaeb79047e45d491e374fda0aa52b4dce9b69f8dfdfcf8249caf8

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7d02feff77fb512ea94600cc8b2be01fe4470c152bff948637ea7c5485cee110
MD5 fb0a7a6073c74abe6387b4a61eb96f56
BLAKE2b-256 c57ae8d2574956eb83d855c9ceed5d23530490b83c3981ea6e4e876fe7b39711

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6c5afd45c44c3edee9b0a08e2782a337613155d9c00aad1bb45f3bbad8ef669f
MD5 f1c63e4c638338d9b8c1c1bdf204b305
BLAKE2b-256 60e7c9a072b4d8b85c103b1cfbb64acb4c6844c0c9a3c4f0e80b8d0a1f1583d4

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a1894ef2aa8032a7b2a7591b6464bd4051d886eeff03153ce438f87a86a8eab
MD5 1178941e36f633af81aa0f6862fea8a4
BLAKE2b-256 75fe34dc628485392867732cf7144f91347b2b7bba90724eb106d01cccefab4b

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ab240a7bbbc7440bad7b5703a044ba8761b06a20228dc42f289598281f414dd
MD5 d19ee1b9a221c101d00fa4813e270982
BLAKE2b-256 782c9993873cc8253324a3763a4108010abbf62f4a637c11282823411cb8245b

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9fe38579ad7c024252936a190c0769ada3b9a769fd9a1f1dd603239c67e4455a
MD5 50b333937546b342fa7314867d36f703
BLAKE2b-256 45e22c3808d113b30c49a05d25ffff083e9dff06c1bcd7981b3e65ad0214c354

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db590318cfbadefee4ec2d256af1de5e8442a713c9f70ef5fb0098bb7b002fff
MD5 0da1d2b6bd7553c0be66849bb1407f1f
BLAKE2b-256 7fdd4022dd27f6379ca8a941d3d82168673b146bc5c70f9b1e97026c374a3b7c

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.13.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 46.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 94f2bb994f544d09da3c2e03898844cdf8d4bb6112f11b8ec3c4dfcdb99465cc
MD5 7d2fdfbe7064db304514b590fea0a995
BLAKE2b-256 ee386d4255ef661da7049a27b89ddd9a22de4f9e55261ef4dbe023ee8a83c262

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e09825f27d9772ddf3148c039ed2005ba410df4c9a9a19cbdd2bee8702da90bd
MD5 13f090559a7f2f191291c0c3720bdf18
BLAKE2b-256 a4f6507c4768ebea49e75bbc3b437e5d6c81243d5dac7889740ad54a527717b2

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41f578d785a6338bc596273ae6f1e19e27bd5a85faecba77959c5811ab9d86a3
MD5 84ab3fd12792b1ddd944b1d7a44a52a2
BLAKE2b-256 892437bc27518ae190c2e68cc3e5e08d60c6b0d0ca320a7d4d4a1564790a7957

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e26b23368ce80c3eeae91fdb0f9ec124b9ad4ba47d1b51104dfeee818e5fef6
MD5 78e00a447904066c49f3de5743cc93fb
BLAKE2b-256 eef1e5975710d368f36c673b893bfbd8a595fd680b41b502395727514dd3b4b2

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 57fd291abe2a52de9b8603fe12698fec04eb06294799d0af2eb5d51c15252be3
MD5 29b5c84753f8786fbfb154b2b8b693af
BLAKE2b-256 eba501b3fee5eafbb84a691f7e534bb89a95e2e77f219108a8c7f9c231297feb

See more details on using hashes here.

File details

Details for the file scipy-1.13.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.13.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7af7860498aad7b08009b210364abc8a02b76df120a104e248ef3235f0317469
MD5 cd952242a46abfe48a7e92366258399d
BLAKE2b-256 ae547b7bc003bd129ecd6d78b1f34e6f9c236463b20db5c0bfe374070ab43246

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page