Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue.svg

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the forum or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.16.0rc1.tar.gz (30.6 MB view details)

Uploaded Source

Built Distributions

scipy-1.16.0rc1-cp313-cp313t-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.13tWindows x86-64

scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl (35.5 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.3 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ x86-64

scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_arm64.whl (21.2 MB view details)

Uploaded CPython 3.13tmacOS 14.0+ ARM64

scipy-1.16.0rc1-cp313-cp313t-macosx_12_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.13tmacOS 12.0+ ARM64

scipy-1.16.0rc1-cp313-cp313t-macosx_10_14_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.13tmacOS 10.14+ x86-64

scipy-1.16.0rc1-cp313-cp313-win_amd64.whl (38.3 MB view details)

Uploaded CPython 3.13Windows x86-64

scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl (35.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

scipy-1.16.0rc1-cp313-cp313-macosx_14_0_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

scipy-1.16.0rc1-cp313-cp313-macosx_14_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

scipy-1.16.0rc1-cp313-cp313-macosx_12_0_arm64.whl (28.4 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

scipy-1.16.0rc1-cp313-cp313-macosx_10_14_x86_64.whl (36.3 MB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

scipy-1.16.0rc1-cp312-cp312-win_amd64.whl (38.4 MB view details)

Uploaded CPython 3.12Windows x86-64

scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl (35.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

scipy-1.16.0rc1-cp312-cp312-macosx_14_0_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

scipy-1.16.0rc1-cp312-cp312-macosx_14_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

scipy-1.16.0rc1-cp312-cp312-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

scipy-1.16.0rc1-cp312-cp312-macosx_10_14_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

scipy-1.16.0rc1-cp311-cp311-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.11Windows x86-64

scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl (35.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

scipy-1.16.0rc1-cp311-cp311-macosx_14_0_x86_64.whl (23.3 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

scipy-1.16.0rc1-cp311-cp311-macosx_14_0_arm64.whl (20.8 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

scipy-1.16.0rc1-cp311-cp311-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

scipy-1.16.0rc1-cp311-cp311-macosx_10_14_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

File details

Details for the file scipy-1.16.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.16.0rc1.tar.gz
  • Upload date:
  • Size: 30.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0rc1.tar.gz
Algorithm Hash digest
SHA256 39bd1557eca376b28c5485f8bcd8672030dfb59f731f8bf5149b234d2ce1d6a6
MD5 0fc17012ff3b3af2b357dab9d1419cc7
BLAKE2b-256 7a9e2c8b1e1052151067e73b4192c0c04f355b3d31b485bd74f48bd4e9e87916

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0rc1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 38.5 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 da75e4904b39d8fd3b4a486b231e584d9eadad7b2611a544cde917a3f0f91887
MD5 47e65296738480be82637b27444de677
BLAKE2b-256 06782711580e6a4be5114359780b4b2d1d091aff61f77815cf36a7e426c85ade

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4fcd066dad0496345b441171dde2b59cf7e0252625013be0565d9f98d8743d6d
MD5 4dbe721ec2b34f80e03c20da74907f2e
BLAKE2b-256 219e0d5b52905e9cee149bf47d239378f0cafabc8c03517cc2a8a64ee247a4a5

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6b4677f138afec7f9c0781835933c563b7b48037f899b7e338a4bd41f1c4e396
MD5 209b0ef443140dc57fbde0042897433b
BLAKE2b-256 e8339b9288f7594b138a9b61c3b2e0335793d721873f81caf6da09314eac4cc7

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6ea4ff44690f74e5789caeac0df87cb2a6fad0844dd6c72791b90c89ec8c7a4
MD5 14bfb5ad66b53727ecb264f3b3aeda19
BLAKE2b-256 b7407934d4861e467e6faea4ce02afeb7bf4ba879a22a1bf5fc2950fec89b3f6

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e54b528cde6c5026cc2262a80c56ecc6cd634cfe47f55a33b3e6cb02ebdf00da
MD5 f7b40aab6ff45b78f265bf4270439843
BLAKE2b-256 61d5a8caecb5db6e27b2b7c8b984337f6feee18b50da1661941c345349b80cd7

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 6706ee69e9e76b111b9c17b591a7ab90c5e25cf7fe3ebf7415f60a5ea5678091
MD5 e2e9992816d7d9f5dda4af729cfb7af3
BLAKE2b-256 6b5dcb935904c71d112138555e76afb3e4c5d9cc5198938ef55ca7240535d6ed

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 fc51cc09b495b3ea6b876a4b2bc2236298c987b575fbda8884ee9c732184f22f
MD5 887334127c1c1019b094e19f705704b7
BLAKE2b-256 98da83abb9faff24c6a78abbbb9aa48f830e42800dfcb24c39dd68f3d2915526

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4e46cc7d525f40405203ff2d65758c95791142d62cd6d0ce23e9040c0162b2bd
MD5 5773c82a789bcd66ca0b75f3267e2a42
BLAKE2b-256 51d113246b311c4dad18c8978dd26d386adc78f308e95cc0715b0c14c4536855

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313t-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313t-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3face06670bc2c1df151e98a0f973311172b8d8d9d331270df2f1a4afd8ce3c8
MD5 1caec6d83c4752e3be3b84f7f17f76cc
BLAKE2b-256 9f66654106b0331e4df291472d87231ff2eb75d2d6ff596c796a7ec11425cbbd

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0rc1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 38.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6b2ceceaa4092137f649a329277251e5656eb9418c3e9ae1e2ab2da17741ca17
MD5 db7d7aa11dbe62cef875bd63ed10af40
BLAKE2b-256 f400442a020268ac919e5ee466553d228f7be6d961100a385bdc9990bc8cf044

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 495e08e21dacdff9032ed0e445addeaa086c554d840d4e6cb5f2a198b3757ead
MD5 45319bce0fadf30cb40712f636edb6f4
BLAKE2b-256 f98bad05f080b35042c6e1a3587f81e7ac9267ffef063142771e74f935cb685a

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f763d5fbed80bca43c5c764df3f1222ad146e3262b9c580f8cb80f5dec5f785f
MD5 eca8daec712dfcc8aec6ab3412ae90d4
BLAKE2b-256 b0b10b8819044c842195fd76eb4af50ca9577a01c0ea495f37e27de46c599e88

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3cccfc6aedb0528381c805315339bd593bfdc4e1d9bce359d22e88ac79bc7e8f
MD5 fd5ab96fc91bdfdce430e90c85c5f565
BLAKE2b-256 6c618c68b0178196527cc3bda55483eb1877d64426356c9195a7239b6111c55a

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b628ed9a1d50f692b0dd152565c0b5ddf9bdbc7f4d0aa193e475c606bab95fef
MD5 171e4f6757a3740489a4cc8a57c2b6a2
BLAKE2b-256 7afb75523bfc19b265370760f261d2bd72d24251416c0ac4362cdbc9a716ce79

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 c5c6c9810ec77b72e238b4ab1e4ccae13e45f7e3588cf35d85fbb635ba26725d
MD5 d0ef5b2bd84d5bc15fe1d9283a855a88
BLAKE2b-256 ef64dc081ac7c94405c35b09e9a07156a6ea84e588f32087e67293bf5dcba20d

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 825ae18a416f68ab2703d4919e34788477b71136d5647dc83d745b1f6929523b
MD5 14fadc3a9826dd020d4e570ede4a3113
BLAKE2b-256 5b6139e641f34243af638a00262dc1233e2683d5cbbad790197023b4ed2202e7

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0026866afa5dd355bc51f8c9f52aaa0dc6265b69c93187b0756a2ab735f95a94
MD5 c33275eb24539e7f371d306779ea3ffe
BLAKE2b-256 3411675bd016aebe155c08bc2a7e63ee3c6a67aa67c6788c0945934b5f5c8056

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e6a109ac6fbcaae06e191fc9408e452e4a81e401df6028ed101c17ee1eb67d7e
MD5 6e872a37da1a12364b20b0cfd5ed405c
BLAKE2b-256 2805faf139367e6995a72f25a250a4ecdfe89118005f46a661a0b045bb6b89e5

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0rc1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 38.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e38e3a4ffa8a7d6d15e03761e0e448f8f6e41c64259ea63ca9418fc5f9f7c7a4
MD5 c6a161f264f1144d2741f1402edca0fc
BLAKE2b-256 75073f47d032fa6c9c9fc313b920d6c2d96eb379b8c80b876596bed3d3fb63cd

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5e48a1975cdbf21f0f6a18a7a952633ad61a8176a927d54e1ee840468f6a1dc5
MD5 0149585229e651f83e6ea47ddca977e6
BLAKE2b-256 6b123aec0c4d872c93a284fc5f6d6660e061806fe1a4a29e9cc1f6fbc90a3a18

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fe7ae55b54b5fd3b4f668496b8e6ac3d0fe974a90a46ae37658186ac00da5ae8
MD5 723d3644f6a2d4989591c6055aad44f3
BLAKE2b-256 eaaf139f05de063cfdb260871002120426a3f6b0a3dc0c51a98e5a8e123ed7ee

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37bdfd8e14c3b52779ef7ecb488fa5f8e9b452816964eae5bea92119107335c9
MD5 37e17f37302b4ed6700eff76106bb7b3
BLAKE2b-256 9d0d2d05c5aeb95244c22f5d9c668d2444d783c59d26d357d4a5d94b36c2d555

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b2a7410b6c212bc6a6169000c1c6648c7b86a751caea841091ebed91e42f35b4
MD5 a03d3ec6f6e8d15a755bfa314e1f2fc9
BLAKE2b-256 d7ccae38589c932272e0e5bd5939bf004def9324418c5034c3a90549ae4f7077

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e853ddfa1fe877721b28aedc91d73d1fba20c79b48f5ee6feb7ba19db4c6e5b1
MD5 3ed54a82c329261de23b412fd0ea68ff
BLAKE2b-256 a3659ec889d580873e30f901c6a057fd8425e3291749ad21d4a66859c85a0bc4

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 053556f59eff880254dcc7cb3c8cd0e49bb0f2dcde9334b450b1cbf3d470986f
MD5 a92b1745ccfe453374ada27f98f979b0
BLAKE2b-256 afac65c83e74254b5b6c24be86e1001d7696722ce8b349e78edf6381aaaf55a4

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b03a1066937401dc6ad22818634c9fe32d1a5a4fbd95ef77867aeba5a2cfc13e
MD5 f59ccb54325909f9bd0b069212c22917
BLAKE2b-256 e07b2c76ab68db69478b6d194e8d1f712e2e42e95a271c2a3ba8c1a0b6a26d43

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c75c82520b43c00a0eb187259d0b3cf602fb44cb2469b9d42a821031f8e79a22
MD5 550fc0f904e3f199dc9c86e98e9a36e0
BLAKE2b-256 a0c1c6f16c194bd832616bc6fc4e8d7b9156abf40df91bcacd1a2930cc7d5736

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.16.0rc1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 38.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5faeba0da577c8c6e0424a4ca05afc681f5dbcd38f381dd378eda286c6e9383f
MD5 e6d5a05d05222b0ca543add0cd2b88f4
BLAKE2b-256 97be617b93af7701d65ca8ab6b7072a93513ac73040937071794b4f461d6ca77

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7191594be284cae3435057b7635a8eedf5a7396d23cbf4454fbe1ec9bad844de
MD5 0f671d54f414ca97f6aa16a0fe79a85b
BLAKE2b-256 7b7047af8600122e5d8b758dd955326aecf630837b72729fada49a0aa4b3d276

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 71d930c07616b6bb44a64c5c276a556d233f2d3cbc446745505bc39d2f9538c9
MD5 b20a88fd01087c4d9b8dced629754cca
BLAKE2b-256 6b0845c1407603fd5be17f7b892c2e82fd7170d9f1e51c3807b4c65270c97137

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02107faaa109ee24d069603c8e97c3fd37887ef0ca11b0d00e207be98b01ef08
MD5 2a8e0575cee17579cf1ed009b0759cf9
BLAKE2b-256 d060f96c33e7e618cd37200ed0f2a7f2a2d77f2a9af85dd2fae2860b3d66b9ab

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b45d6a0d25374b76b64a4db2729b1678d9b4fe5628463b34ff361834379532a
MD5 613de089073aa7400fa40fac97fbc26f
BLAKE2b-256 5fcd8917359712766a5f026aaac76f10db3b500c207224b429de099524f860db

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e6f002a20bdd6d963c3d567c71b967eede800b64ec8a711f8daff5e1e46abc25
MD5 bc7251c8c87949f245159625557fe9ca
BLAKE2b-256 3c84220383c3d4c95540d0ab798e98ee248a8f681b6a489172ff2d1b93495a58

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 890da3199a488d85699b0064abdda5e7e54c7316df3e6f726154ae4e1392c814
MD5 41508838340abc43b05c1ae54d4eb88a
BLAKE2b-256 2c4a52a80eb351ed6c7309b9955df55f305dbf9feec250026f8c67da281803e1

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 74038b6299c68a209222813503672a102dbca04b56c4ed0e27b3cf9b0b6bbe57
MD5 43a84637cac2ba4a11f480f46ff82125
BLAKE2b-256 0ca5d838ad861fe3aa9252c20d5f13ce0cdf7d9742c4c4563f6ee043c1e6d0d4

See more details on using hashes here.

File details

Details for the file scipy-1.16.0rc1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.16.0rc1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 828903af480d4026ddb842ac8c9bd2a5685b6fc817ec9258f8d4251d9e67d192
MD5 8ae7944a2bb3c9c580ab59192d4b4893
BLAKE2b-256 0f43e1cd03504dfcfc42f1f123012b9fd31dd6c49f847d967169017fc96376e3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page