Skip to main content

Training time estimator for scikit-learn algorithms

Project description

Documentation Status Build Status Build status codecov PyPI version Conda Version Conda Downloads License

scitime

Training time estimation for scikit-learn algorithms. Method explained in this article

Currently supporting:

  • RandomForestRegressor
  • SVC
  • KMeans
  • RandomForestClassifier

Environment setup

Python version: 3.7

Package dependencies:

  • scikit-learn (~=0.24.1)
  • pandas (~=1.1.5)
  • joblib (~=1.0.1)
  • psutil (~=5.8.0)
  • scipy (~=1.5.4)

Install scitime

❱ pip install scitime
or 
❱ conda install -c conda-forge scitime

Usage

How to compute a runtime estimation

  • Example for RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
import numpy as np
import time

from scitime import RuntimeEstimator

# example for rf regressor
estimator = RuntimeEstimator(meta_algo='RF', verbose=3)
rf = RandomForestRegressor()

X,y = np.random.rand(100000,10),np.random.rand(100000,1)
# run the estimation
estimation, lower_bound, upper_bound = estimator.time(rf, X, y)

# compare to the actual training time
start_time = time.time()
rf.fit(X,y)
elapsed_time = time.time() - start_time
print("elapsed time: {:.2}".format(elapsed_time))
  • Example for KMeans
from sklearn.cluster import KMeans
import numpy as np
import time

from scitime import RuntimeEstimator

# example for kmeans clustering
estimator = RuntimeEstimator(meta_algo='RF', verbose=3)
km = KMeans()

X = np.random.rand(100000,10)
# run the estimation
estimation, lower_bound, upper_bound = estimator.time(km, X)

# compare to the actual training time
start_time = time.time()
km.fit(X)
elapsed_time = time.time() - start_time
print("elapsed time: {:.2}".format(elapsed_time))

The Estimator class arguments:

  • meta_algo: The estimator used to predict the time, either RF or NN
  • verbose: Controls the amount of log output (either 0, 1, 2 or 3)
  • confidence: Confidence for intervals (defaults to 95%)

Parameters of the estimator.time function:

  • X: np.array of inputs to be trained
  • y: np.array of outputs to be trained (set to None for unsupervised algo)
  • algo: algo whose runtime the user wants to predict

--- FOR TESTERS / CONTRIBUTORS ---

Local Testing

Inside virtualenv (with pytest>=3.2.1):

(env)$ python -m pytest

How to use _data.py to generate data / fit models?

$ python _data.py --help

usage: _data.py [-h] [--drop_rate DROP_RATE] [--meta_algo {RF,NN}]
                [--verbose VERBOSE]
                [--algo {RandomForestRegressor,RandomForestClassifier,SVC,KMeans}]
                [--generate_data] [--fit FIT] [--save]

Gather & Persist Data of model training runtimes

optional arguments:
  -h, --help            show this help message and exit
  --drop_rate DROP_RATE
                        drop rate of number of data generated (from all param
                        combinations taken from _config.json). Default is
                        0.999
  --meta_algo {RF,NN}   meta algo used to fit the meta model (NN or RF) -
                        default is RF
  --verbose VERBOSE     verbose mode (0, 1, 2 or 3)
  --algo {RandomForestRegressor,RandomForestClassifier,SVC,KMeans}
                        algo to train data on
  --generate_data       do you want to generate & write data in a dedicated
                        csv?
  --fit FIT             do you want to fit the model? If so indicate the csv
                        name
  --save                (only used for model fit) do you want to save /
                        overwrite the meta model from this fit?

(_data.py uses _model.py behind the scenes)

How to run _model.py?

After pulling the master branch (git pull origin master) and setting the environment (described above), run ipython and:

from scitime._model import RuntimeModelBuilder

# example of data generation for rf regressor
trainer = RuntimeModelBuilder(drop_rate=0.99999, verbose=3, algo='RandomForestRegressor')
inputs, outputs, _ = trainer._generate_data()

# then fitting the meta model
meta_algo = trainer.model_fit(generate_data=False, inputs=inputs, outputs=outputs)
# this should not locally overwrite the pickle file located at scitime/models/{your_model}
# if you want to save the model, set the argument save_model to True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scitime-0.1.1.tar.gz (15.4 kB view details)

Uploaded Source

File details

Details for the file scitime-0.1.1.tar.gz.

File metadata

  • Download URL: scitime-0.1.1.tar.gz
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.19.1 CPython/3.7.3

File hashes

Hashes for scitime-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6981eff3f8eac835762c6b64d5a123bb8f785229d85eb47855e4b721737aaf3f
MD5 e1a2160c6fca95ebe89b86be820539b6
BLAKE2b-256 0356172df6aa430f53352c6d50f1d00493ebceef83d8d2b86bbfe2d44b602669

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page