A powerful, format-agnostic, community-driven Python library for analysing and visualising Earth science data
Project description
Iris is a powerful, format-agnostic, community-driven Python library for analysing and visualising Earth science data
Table of contents
Overview
Iris implements a data model based on the CF conventions giving you a powerful, format-agnostic interface for working with your data. It excels when working with multi-dimensional Earth Science data, where tabular representations become unwieldy and inefficient.
CF Standard names, units, and coordinate metadata are built into Iris, giving you a rich and expressive interface for maintaining an accurate representation of your data. Its treatment of data and associated metadata as first-class objects includes:
- a visualisation interface based on matplotlib and cartopy,
- unit conversion,
- subsetting and extraction,
- merge and concatenate,
- aggregations and reductions (including min, max, mean and weighted averages),
- interpolation and regridding (including nearest-neighbor, linear and area-weighted), and
- operator overloads (
+
,-
,*
,/
, etc.)
A number of file formats are recognised by Iris, including CF-compliant NetCDF, GRIB, and PP, and it has a plugin architecture to allow other formats to be added seamlessly.
Building upon NumPy and dask, Iris scales from efficient single-machine workflows right through to multi-core clusters and HPC. Interoperability with packages from the wider scientific Python ecosystem comes from Iris' use of standard NumPy/dask arrays as its underlying data storage.
Documentation
The documentation for stable released versions of Iris, including a user guide, example code, and gallery.
The documentation for the latest development version of Iris.
Installation
The easiest way to install Iris is with conda:
conda install -c conda-forge iris
Detailed instructions, including information on installing from source, are available in INSTALL.
Get in touch
- Report bugs, or suggest new features using an Issue or Pull Request on Github. You can also comment on existing Issues and Pull Requests.
- For discussions from a user perspective you could join our SciTools Users Google Group.
- For those involved in developing Iris we also have an Iris Developers Google Group.
- StackOverflow For "How do I?".
Copyright and licence
Iris may be freely distributed, modified and used commercially under the terms of its GNU LGPLv3 license.
Contributing
Information on how to contribute can be found in the Iris developer guide.
(C) British Crown Copyright 2010 - 2019, Met Office
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for scitools_iris-2.4.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36f7df91ff9a085613341fd1570244ac128fa2101e127740b349c8b129606948 |
|
MD5 | 774c6d74cb9d6b40bd8fa0e28e29f622 |
|
BLAKE2b-256 | 76b54f960d40d8bd4bea85f631a23da95fb71c14e912b7ba573b1c2f1a4e98f7 |