A library to calculate the latent time of scRNA-seq
Project description
scLTNN (single cell latent time neuron network)
A composite regression neural network for latent timing prediction of single-cell RNA-seq data
For more details, please check out our publication.
Directory structure
.
├── scltnn # Main Python package
├── experiments # Experiments and case studies
├── scltnn # the raw code of scltnn
├── model # the pre-model by ANN
├── source # Documentation files
├── LICENSE
└── README.md
Installation
The scLTNN
package can be installed via pip:
pip install scltnn
Usage
Please checkout the documentations and tutorials at scltnn.readthedocs.io.
Reproduce results
- Follow instructions in
data
to prepare the necessary data, it can be download at https://figshare.com/articles/dataset/scltnn_data/20383416 - Follow instructions in
experiments
for case studies
Contact
- Zehua Zeng (starlitnightly@163.com)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scltnn-0.1.0.tar.gz
(57.9 kB
view details)
Built Distribution
scltnn-0.1.0-py3-none-any.whl
(58.7 kB
view details)
File details
Details for the file scltnn-0.1.0.tar.gz
.
File metadata
- Download URL: scltnn-0.1.0.tar.gz
- Upload date:
- Size: 57.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7b5db63c21f744398b2634b7e598066ac804b4ed16e3340fa7ca5bf683dc24a |
|
MD5 | 03f0ee64f28b2c7eea32ec39ed75476c |
|
BLAKE2b-256 | d90ca2839e4a5bbbe3b9fd80d184abb3129ef87a831b323fadce315e5e44356b |
File details
Details for the file scltnn-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: scltnn-0.1.0-py3-none-any.whl
- Upload date:
- Size: 58.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d1303b1cd7a95d1bc09822e3a0c99af871b34a35adc1607c7e33958f4a7cab6 |
|
MD5 | 1fe76dadd4506a53c3d80df79146fce1 |
|
BLAKE2b-256 | 65999efa2ac6246657accc8482df9047718358df4e52f69d877021d767d26227 |