Skip to main content

Search-Convolutional Neural Networks

Project description

SCNN
====

An implementation of search-convolutional neural networks [1], a new model for graph-structured data.

Installation
------------
Using pip:

pip install scnn

Usage
-----

import numpy as np
from scnn import SCNN, data
from sklearn.metrics import f1_score

# Parse the cora dataset and return an adjacency matrix, a design matrix, and a 1-hot label matrix
A, X, Y = data.parse_cora()

# Construct array indices for the training, validation, and test sets
n_nodes = A.shape[0]
indices = np.arange(n_nodes)
train_indices = indices[:n_nodes // 3]
valid_indices = indices[n_nodes // 3:(2* n_nodes) // 3]
test_indices = indices[(2* n_nodes) // 3:]

# Instantiate an SCNN and fit it to cora
scnn = SCNN()
scnn.fit(A, X, Y, train_indices=train_indices, valid_indices=valid_indices)

# Predict labels for the test set
preds = scnn.predict(X, test_indices)
actuals = np.argmax(Y[test_indices,:], axis=1)

# Display performance
print 'F score: %.4f' % (f1_score(actuals, preds))

References
----------

[1] http://arxiv.org/abs/1511.02136

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scnn-1.3.1.tar.gz (20.0 kB view details)

Uploaded Source

File details

Details for the file scnn-1.3.1.tar.gz.

File metadata

  • Download URL: scnn-1.3.1.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scnn-1.3.1.tar.gz
Algorithm Hash digest
SHA256 cbd28586ea75dbfa3d3f359a914f54e99bbbe6b7ce37fdd0cb88dfd67176aedd
MD5 469b2bde05e85eb832f5af4ac4ebbc93
BLAKE2b-256 112f4d239db4d06abfecc4333834644d837c2724ddf72214d0c40ed7346fc826

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page