Skip to main content

Search-Convolutional Neural Networks

Project description


An implementation of search-convolutional neural networks [1], a new model for graph-structured data.

Using pip:

pip install scnn


import numpy as np
from scnn import SCNN, data
from sklearn.metrics import f1_score

# Parse the cora dataset and return an adjacency matrix, a design matrix, and a 1-hot label matrix
A, X, Y = data.parse_cora()

# Construct array indices for the training, validation, and test sets
n_nodes = A.shape[0]
indices = np.arange(n_nodes)
train_indices = indices[:n_nodes // 3]
valid_indices = indices[n_nodes // 3:(2* n_nodes) // 3]
test_indices = indices[(2* n_nodes) // 3:]

# Instantiate an SCNN and fit it to cora
scnn = SCNN(), X, Y, train_indices=train_indices, valid_indices=valid_indices)

# Predict labels for the test set
preds = scnn.predict(X, test_indices)
actuals = np.argmax(Y[test_indices,:], axis=1)

# Display performance
print 'F score: %.4f' % (f1_score(actuals, preds))



Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scnn-1.3.1.tar.gz (20.0 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page