Skip to main content

A Great Dane turned Python environment detective

Project description

scooby

Build Status PyPI Status

A Great Dane turned Python environment detective

This is a toolset to easily report your Python environment's package versions and hardware resources.

Jupyter Notebook Formatting

Scooby has HTML formatting for Jupyter notebooks and rich text formatting for just about every other environment. We designed this module to be lightweight such that it could easily be added as a dependency to Python projects for environment reporting when debugging. Simply add scooby to your dependencies and implement a function to have scooby report on the aspects of the environment you care most about.

If scooby is unable to detect aspects of an environment that you'd like to know, please share this with us as a feature requests or pull requests.

This work is derived from Dieter Werthmuller's work towards creating a version reporting tool for the empymod and SimPEG projects. This package has been altered to create a lightweight implementation so that it can easily be used as an environment reporting tool in any Python library with minimal impact.

Usage

>>> import scooby
>>> scooby.investigate()

------------------------------------------------------
  Date: Tue Jun 25 16:17:46 2019 MDT
  Platform: Darwin-18.5.0-x86_64-i386-64bit

             12 : CPU(s)
         x86_64 : Machine
          64bit : Architecture
        32.0 GB : RAM

  3.7.3 | packaged by conda-forge | (default, Mar 27
  2019, 15:43:19)  [Clang 4.0.1
  (tags/RELEASE_401/final)]

         1.16.3 : numpy
          1.3.0 : scipy
          7.5.0 : IPython
          3.1.0 : matplotlib

  Intel(R) Math Kernel Library Version 2018.0.3
  Product Build 20180406 for Intel(R) 64
  architecture applications
------------------------------------------------------

But you can also add addtional packages too if you'd like via the addtional keyword argument:

>>> scooby.investigate(additional='pyvista')

------------------------------------------------------
  Date: Tue Jun 25 16:18:01 2019 MDT
  Platform: Darwin-18.5.0-x86_64-i386-64bit

             12 : CPU(s)
         x86_64 : Machine
          64bit : Architecture
        32.0 GB : RAM

  3.7.3 | packaged by conda-forge | (default, Mar 27
  2019, 15:43:19)  [Clang 4.0.1
  (tags/RELEASE_401/final)]

         1.16.3 : numpy
          1.3.0 : scipy
          7.5.0 : IPython
          3.1.0 : matplotlib
         0.20.4 : pyvista

  Intel(R) Math Kernel Library Version 2018.0.3
  Product Build 20180406 for Intel(R) 64
  architecture applications
------------------------------------------------------

Or maybe you want a whole bunch of additional packages:

>>> scooby.investigate(additional=['pyvista', 'vtk', 'appdirs',])

------------------------------------------------------
  Date: Tue Jun 25 16:18:16 2019 MDT
  Platform: Darwin-18.5.0-x86_64-i386-64bit

             12 : CPU(s)
         x86_64 : Machine
          64bit : Architecture
        32.0 GB : RAM

  3.7.3 | packaged by conda-forge | (default, Mar 27
  2019, 15:43:19)  [Clang 4.0.1
  (tags/RELEASE_401/final)]

         1.16.3 : numpy
          1.3.0 : scipy
          7.5.0 : IPython
          3.1.0 : matplotlib
         0.20.4 : pyvista
          8.2.0 : vtk
          1.4.3 : appdirs

  Intel(R) Math Kernel Library Version 2018.0.3
  Product Build 20180406 for Intel(R) 64
  architecture applications
------------------------------------------------------

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scooby-0.0.2.tar.gz (6.4 kB view details)

Uploaded Source

File details

Details for the file scooby-0.0.2.tar.gz.

File metadata

  • Download URL: scooby-0.0.2.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for scooby-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f49307fef83fe25eb6b2cd0d2d55c030062722589d38237b303e2131ddb1d53b
MD5 41503298be253634a0ccccf8acd3fef5
BLAKE2b-256 1e4bc071a62342c095622555aeaa037dd0f29c60c181478feb742ee824c05328

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page