Single-cell PCA.
Project description
scPCA - A probabilistic factor model for single-cell data
scPCA is a versatile matrix factorisation framework designed to analyze single-cell data across diverse experimental designs.
scPCA is a young project and breaking changes are to be expected.
Quick install
scPCA makes use torch
, pyro
and anndata
. We highly recommend to run scPCA on a GPU device.
Via Pypi
The easiest option to install scpca
is via Pypi. Simply type
$ pip install scpca
into your shell and hit enter.
- Free software: MIT license
- Documentation: https://sagar87.github.io/scPCA/index.html
Credits
- Harald Vöhringer
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scpca-0.3.1.tar.gz
(29.9 kB
view details)
Built Distribution
scpca-0.3.1-py3-none-any.whl
(38.7 kB
view details)
File details
Details for the file scpca-0.3.1.tar.gz
.
File metadata
- Download URL: scpca-0.3.1.tar.gz
- Upload date:
- Size: 29.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.8.18 Linux/6.2.0-1015-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d025f1898fb51e09c34025e153b36d6fd999b943518d0c18252cf974b8e00be |
|
MD5 | 0bd68165970c935e7194b36d97d2f167 |
|
BLAKE2b-256 | 7ed545176712fc11d53d37d92b5c11d49743a5e1508e1150017a436504dac065 |
File details
Details for the file scpca-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: scpca-0.3.1-py3-none-any.whl
- Upload date:
- Size: 38.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.8.18 Linux/6.2.0-1015-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d5c7b07774a49021165f1a2fdd87240b7f84f2cdfeee0e69817bc730871acac7 |
|
MD5 | 5c8306ef07a73c4a6c127db2ef61d32d |
|
BLAKE2b-256 | df0835831eaaefefb73e0c313af1a0bf27352ae3cfacfc5f3254df652bf3dba0 |