scprep
Project description
Tools for loading and preprocessing biological matrices in Python.
Installation
preprocessing is available on pip. Install by running the following in a terminal:
pip install --user scprep
Alternatively, scprep can be installed using Conda (most easily obtained via the Miniconda Python distribution):
conda install -c bioconda scprep
Quick Start
You can use scprep with your single cell data as follows:
import scprep # Load data data_path = "~/mydata/my_10X_data" data = scprep.io.load_10X(data_path) # Remove empty columns and rows data = scprep.filter.remove_empty_cells(data) data = scprep.filter.remove_empty_genes(data) # Filter by library size to remove background scprep.plot.plot_library_size(data, cutoff=500) data = scprep.filter.filter_library_size(data, cutoff=500) # Filter by mitochondrial expression to remove dead cells mt_genes = scprep.select.get_gene_set(data, starts_with="MT") scprep.plot.plot_gene_set_expression(data, genes=mt_genes, percentile=90) data = scprep.filter.filter_gene_set_expression(data, genes=mt_genes, percentile=90) # Library size normalize data = scprep.normalize.library_size_normalize(data) # Square root transform data = scprep.transform.sqrt(data)
Examples
Help
If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file scprep-0.12.0.tar.gz
.
File metadata
- Download URL: scprep-0.12.0.tar.gz
- Upload date:
- Size: 69.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08e04a980504c48d9dbc68243b3c9352630d6b8b89418b64d3e50b1634211ecf |
|
MD5 | 245575c32d0f00bcdbe93d4cf718b094 |
|
BLAKE2b-256 | 2343457fdef942aeee5f5b3ed01cd0062c690181f2351b20a31786fa3d5f7ed5 |
File details
Details for the file scprep-0.12.0-py3.7.egg
.
File metadata
- Download URL: scprep-0.12.0-py3.7.egg
- Upload date:
- Size: 148.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3+
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e3d0c80217b7ebf2d106154c08ce406266748d706cb6284fedfd85a76aa4f65a |
|
MD5 | 5f59ed86fedb1661e08adfd64f1cf36a |
|
BLAKE2b-256 | 5e11599ca91664a4c3a731b6d1ffd67a657a29ae0e07238a4b245ff17c395cb7 |
File details
Details for the file scprep-0.12.0-py3.6.egg
.
File metadata
- Download URL: scprep-0.12.0-py3.6.egg
- Upload date:
- Size: 147.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8463d1df008a147115f69dcd691d88bc35de346394f71cb061225fa6e330edcb |
|
MD5 | f49c4a3ae766ae570ee6984f58690c5b |
|
BLAKE2b-256 | 80bcd9a9a3bb50091758ff754f9d4a8361ec41fab3959a7e69c9b02674c6b05d |
File details
Details for the file scprep-0.12.0-py3.5.egg
.
File metadata
- Download URL: scprep-0.12.0-py3.5.egg
- Upload date:
- Size: 150.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2177e0c5b432010e8c853e6bf438a6822301b093d6a69f00c3edcd3e97d51d90 |
|
MD5 | fd64be80fdec16dfcd0c569918d6f745 |
|
BLAKE2b-256 | 85f8a65beb040473daf08c0c5a6bdc54242d0f5993c097ec4ac66b1afd49b5ff |
File details
Details for the file scprep-0.12.0-py3-none-any.whl
.
File metadata
- Download URL: scprep-0.12.0-py3-none-any.whl
- Upload date:
- Size: 77.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6887a9bc0f753b7d59825ad44ee803ac2956df34f81142ff9d2c17b16bedbf63 |
|
MD5 | f4c1d91ca3748a200654e4fc7feca66d |
|
BLAKE2b-256 | ce3701e8b03c361b87980fed1d43d9d84a4e338dab5bb7d0a4b339184efaf5b2 |