scprep
Project description
Tools for loading and preprocessing biological matrices in Python.
Installation
preprocessing is available on pip. Install by running the following in a terminal:
pip install --user scprep
Usage example
You can use scprep with your single cell data as follows:
import scprep # Load data data_path = "~/mydata/my_10X_data" data = scprep.io.load_10X(data_path) # Remove empty columns and rows data = scprep.filter.remove_empty_cells(data) data = scprep.filter.remove_empty_genes(data) # Filter by library size to remove background scprep.plot.plot_library_size(data, cutoff=500) data = scprep.filter.filter_library_size(data, cutoff=500) # Filter by mitochondrial expression to remove dead cells mt_genes = scprep.utils.get_gene_set(data, starts_with="MT") scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90) data = scprep.filter.filter_gene_set_expression(data, mt_genes, percentile=90) # Library size normalize data = scprep.normalize.library_size_normalize(data) # Square root transform data = scprep.transform.sqrt(data)
Help
If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scprep-0.4.0.tar.gz
(18.7 kB
view details)
File details
Details for the file scprep-0.4.0.tar.gz
.
File metadata
- Download URL: scprep-0.4.0.tar.gz
- Upload date:
- Size: 18.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ee78a0aa37bf0371904d27faa25ea0c3333877a2ede76f16fb7d16be43a0990 |
|
MD5 | f20cdc7ccae5925a29b4db7fb2bbaff7 |
|
BLAKE2b-256 | 75a7b4d2c4fb67e8d4757b95745292f895f56cd7f25859a714690f2473df72ef |