Skip to main content

scprep

Project description

Latest PyPi version Travis CI Build Read the Docs Coverage Status Twitter GitHub stars

Tools for loading and preprocessing biological matrices in Python.

Installation

preprocessing is available on pip. Install by running the following in a terminal:

pip install --user scprep

Usage example

You can use scprep with your single cell data as follows:

import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.utils.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, mt_genes,
                                                percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)

Help

If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scprep-0.6.0.tar.gz (22.6 kB view details)

Uploaded Source

File details

Details for the file scprep-0.6.0.tar.gz.

File metadata

  • Download URL: scprep-0.6.0.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/3.6.5

File hashes

Hashes for scprep-0.6.0.tar.gz
Algorithm Hash digest
SHA256 b80a6a8907c18598f4c4f99be888baa9d58c4782992bb07922b8dec06762c725
MD5 6ff2018df2616cfd6b1891ba915d9310
BLAKE2b-256 7d62da78351e07da379e16f9097835f58611d251866d6169f447328dfce34b0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page