Skip to main content

scprep

Project description

Latest PyPi version Latest Conda version Travis CI Build Read the Docs Coverage Status Twitter GitHub stars

Tools for loading and preprocessing biological matrices in Python.

Installation

preprocessing is available on pip. Install by running the following in a terminal:

pip install --user scprep

Alternatively, scprep can be installed using Conda (most easily obtained via the Miniconda Python distribution):

conda install -c bioconda scprep

Usage example

You can use scprep with your single cell data as follows:

import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.utils.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, mt_genes,
                                                percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)

Help

If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scprep-0.8.1.tar.gz (29.0 kB view details)

Uploaded Source

Built Distribution

scprep-0.8.1-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file scprep-0.8.1.tar.gz.

File metadata

  • Download URL: scprep-0.8.1.tar.gz
  • Upload date:
  • Size: 29.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for scprep-0.8.1.tar.gz
Algorithm Hash digest
SHA256 4da05d30f5841c977a091a66e5367d85ad3c64f7b8b51ff84a3847fce322fb49
MD5 bf1eb8f684812a7bcec842faae2869e8
BLAKE2b-256 f604168f73833b42ca6ae9faf27825b8d27adb14f46a5fc923493e044b6360dd

See more details on using hashes here.

File details

Details for the file scprep-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: scprep-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for scprep-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a66b8f6b767b02d8246c06f8c3ed42d8588c9479e0e5997509e399c7c3173230
MD5 68f6a58ada2209d3d46ba4e6e1a87620
BLAKE2b-256 9d316ef4119b331b881ae6e6f76f115db3cb82e2d4ee97966d356f7dda931191

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page