Skip to main content

scprep

Project description

Latest PyPi version Latest Conda version Travis CI Build Read the Docs Coverage Status Twitter GitHub stars

Tools for loading and preprocessing biological matrices in Python.

Installation

preprocessing is available on pip. Install by running the following in a terminal:

pip install --user scprep

Alternatively, scprep can be installed using Conda (most easily obtained via the Miniconda Python distribution):

conda install -c bioconda scprep

Usage example

You can use scprep with your single cell data as follows:

import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.utils.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, mt_genes,
                                                percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)

Help

If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scprep-0.9.0.tar.gz (42.8 kB view details)

Uploaded Source

Built Distribution

scprep-0.9.0-py3-none-any.whl (37.4 kB view details)

Uploaded Python 3

File details

Details for the file scprep-0.9.0.tar.gz.

File metadata

  • Download URL: scprep-0.9.0.tar.gz
  • Upload date:
  • Size: 42.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/3.6.5

File hashes

Hashes for scprep-0.9.0.tar.gz
Algorithm Hash digest
SHA256 ac9044a2f53ef6e7bd57a8077175033889c549b9f3b666dec97cde581b18dc45
MD5 5ab506dda8664c24f7cab12c5f97bbca
BLAKE2b-256 c0f49ee1f664609e8f1d94b7edd06f2698b7dbc3d0fb012df1621cc8fb63afc0

See more details on using hashes here.

File details

Details for the file scprep-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: scprep-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 37.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/3.6.5

File hashes

Hashes for scprep-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ced5edc7133489548c2c3a55423a06783c541c01acee8ba3b58b34c0805a65b5
MD5 593d14187d373adcf33947eaca2db650
BLAKE2b-256 dfaba01a940191af774aec1eb041e6b4bca0c9d5d21c50a6cf1806d6ef294bbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page