A library for converting any text (xml, html, plain text, stdout, etc) to python datatypes
Project description
Scrape-schema
This library is designed to write structured, readable and reusable parsers for html, raw text and is inspired by dataclasses and ORM libraries
🚨 Scrape-schema is currently in Pre-Alpha. Please expect breaking changes.
Motivation
Simplifying parsers support, where it is difficult to use or the complete absence of the API interfaces, decrease boilerplate code and easy separate extraction logic from the crawling
Structuring, data serialization and use as an intermediate layer for third-party serialization libraries: pydantic, json, dataclasses, attrs, etc
Features
- Built top on Parsel.
- re, css, xpath, jmespath, chompjs features.
- Fluent interface simular parsel.Selector API for easy to use.
- Decrease boilerplate code.
- Does not depend on the http client implementation, use any!
- Python 3.8+ support.
- Reusability, code consistency.
- Dataclass-like structure.
- Partial support auto type-casting from annotations (str, int, float, bool, list, dict, Optional)
- Detailed logging process to make it easier to write a parser
Install
pip install scrape-schema
Example
The fields interface is similar to the original parsel library
# Example from parsel documentation
from parsel import Selector
text = """
<html>
<body>
<h1>Hello, Parsel!</h1>
<ul>
<li><a href="http://example.com">Link 1</a></li>
<li><a href="http://scrapy.org">Link 2</a></li>
</ul>
<script type="application/json">{"a": ["b", "c"]}</script>
</body>
</html>"""
def schema(txt: str):
selector = Selector(text=txt)
return {
"h1": selector.css('h1::text').get(),
"words": selector.xpath('//h1/text()').re(r'\w+'),
"urls": selector.css('ul > li').xpath('.//@href').getall(),
"sample_jmespath_1": selector.css('script::text').jmespath("a").get(),
"sample_jmespath_2": selector.css('script::text').jmespath("a").getall()
}
print(schema(text))
# {'h1': 'Hello, Parsel!',
# 'words': ['Hello', 'Parsel'],
# 'urls': ['http://example.com', 'http://scrapy.org'],
# 'sample_jmespath_1': 'b',
# 'sample_jmespath_2': ['b', 'c']}
from scrape_schema import BaseSchema, Parsel
class Schema(BaseSchema):
h1: str = Parsel().css('h1::text').get()
words: list[str] = Parsel().xpath('//h1/text()').re(r'\w+')
urls: list[str] = Parsel().css('ul > li').xpath('.//@href').getall()
sample_jmespath_1: str = Parsel().css('script::text').jmespath("a").get()
sample_jmespath_2: list[str] = Parsel().css('script::text').jmespath("a").getall()
text = """
<html>
<body>
<h1>Hello, Parsel!</h1>
<ul>
<li><a href="http://example.com">Link 1</a></li>
<li><a href="http://scrapy.org">Link 2</a></li>
</ul>
<script type="application/json">{"a": ["b", "c"]}</script>
</body>
</html>"""
print(Schema(text).dict())
# {'h1': 'Hello, Parsel!',
# 'words': ['Hello', 'Parsel'],
# 'urls': ['http://example.com', 'http://scrapy.org'],
# 'sample_jmespath_1': 'b',
# 'sample_jmespath_2': ['b', 'c']}
The scrape_schema example output looks like the previous one, why do you need this library?
- Easy to modify
- Easy add additional methods
- Easy to port to another project without having to deal with the logic and call stack
- IDE typing support
For example, if you need to modify a parser, with scrape_schema
it is easy and simple to do!
from uuid import uuid4
from datetime import datetime
from scrape_schema import BaseSchema, Parsel, sc_param, Callback
from scrape_schema.validator import markup_pre_validator
class Schema(BaseSchema):
# invoke simple functions to fields output
# add uuid4 id
id: str = Callback(lambda: str(uuid4()))
# add parse date
date: str = Callback(lambda: str(datetime.today()))
h1: str = Parsel().css('h1::text').get()
# convert to upper case
h1_upper: str = Parsel().css('h1::text').get().upper()
# convert to lower case
h1_lower: str = Parsel().css('h1::text').get().lower()
words: list[str] = Parsel().xpath('//h1/text()').re(r'\w+')
# alt solution split words
words_2: list[str] = Parsel().xpath('//h1/text()').get().split()
# join result by ' - ' string
words_join: str = Parsel().xpath('//h1/text()').re(r'\w+').join(" AND ")
urls: list[str] = Parsel().css('ul > li').xpath('.//@href').getall()
# replace http protocol to https
urls_https: list[str] = Parsel().css('ul > li').xpath('.//@href').getall().replace("http://", "https://")
# you can modify output keys
sample_jmespath_1: str = Parsel(alias="jsn1").css('script::text').jmespath("a").get()
sample_jmespath_2: list[str] = Parsel(alias="class").css('script::text').jmespath("a").getall()
# or calc json count values
jsn_len: int = Parsel(auto_type=False).css('script::text').jmespath("a").getall().count()
# pre validation markup input before parse text.
# if text from first h1 element != 'Hello, Parsel!' - throw `SchemaPreValidationError` exception
@markup_pre_validator()
def validate_markup(self) -> bool:
return self.__selector__.css('h1::text').get() == 'Hello, Parsel!'
# or create fields with custom rule
@sc_param
def custom(self) -> str:
return "hello world!"
# you can add extra methods!
def parse_urls(self):
for url in self.urls:
print(f"parse {url}")
text = """
<html>
<body>
<h1>Hello, Parsel!</h1>
<ul>
<li><a href="http://example.com">Link 1</a></li>
<li><a href="http://scrapy.org">Link 2</a></li>
</ul>
<script type="application/json">{"a": ["b", "c"]}</script>
</body>
</html>"""
schema = Schema(text)
# invoke custom method
schema.parse_urls()
# parse http://example.com
# parse http://scrapy.org
print(schema.dict())
# !!!field from @sc_param decorator
# vvvvvvvvvvvvvvvvvvvvvv
# {'custom': 'hello world!',
# !!!simple functions callbacks output
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
# 'id': '6b66de7b-5b5f-445a-b8a7-3b17332c1ff5',
# 'date': '2023-09-29 18:47:03.638941',
# 'h1': 'Hello, Parsel!', 'h1_upper': 'HELLO, PARSEL!', 'h1_lower': 'hello, parsel!',
# 'words': ['Hello', 'Parsel'], 'words_2': ['Hello,', 'Parsel!'],
# 'words_join': 'Hello AND Parsel',
# 'urls': ['http://example.com', 'http://scrapy.org'],
# 'urls_https': ['https://example.com', 'https://scrapy.org'],
# !!!changed key alias 'sample_jmespath_2' TO 'class'!!!
# vvvvvvvvvvvvvvvvv
# 'jsn1': 'b', 'class': ['b', 'c'], 'jsn_len': 2}
See more examples and documentation for get more information/examples
This project is licensed under the terms of the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scrape_schema-0.6.3.tar.gz
.
File metadata
- Download URL: scrape_schema-0.6.3.tar.gz
- Upload date:
- Size: 24.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.24.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6490bce9cb84948b679b02284aa3fdebb0bb9147f3fc44b77d4a1386fec772cf |
|
MD5 | 77f928fcfc8a3fe7065d6d205db2d1ea |
|
BLAKE2b-256 | dbfd57eb544d074b5d2f57b3d29415ed8c3a8840e93b898513a0736be53d5f59 |
File details
Details for the file scrape_schema-0.6.3-py3-none-any.whl
.
File metadata
- Download URL: scrape_schema-0.6.3-py3-none-any.whl
- Upload date:
- Size: 30.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.24.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fcd606644551199254b7421116f8de54d94938161f9292542b74e042b2fb221 |
|
MD5 | efe6199030dd44311ca02e42dd152ed1 |
|
BLAKE2b-256 | 11a760ad88755e39cc2d21333de2652057529a0898f6acb3c0bc4b4c7c96c7b7 |