Skip to main content

A web scraping library based on LangChain which uses LLM and direct graph logic to create scraping pipelines.

Project description

🕷️ ScrapeGraphAI: You Only Scrape Once

English | 中文 | 日本語 | 한국어 | Русский

Downloads linting: pylint Pylint CodeQL License: MIT

ScrapeGraphAI is a web scraping python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, Markdown, etc.).

Just say which information you want to extract and the library will do it for you!

ScrapeGraphAI Hero

🚀 Quick install

The reference page for Scrapegraph-ai is available on the official page of PyPI: pypi.

pip install scrapegraphai

playwright install

Note: it is recommended to install the library in a virtual environment to avoid conflicts with other libraries 🐱

Optional Dependencies Additional dependecies can be added while installing the library:
  • More Language Models: additional language models are installed, such as Fireworks, Groq, Anthropic, Hugging Face, and Nvidia AI Endpoints.

    This group allows you to use additional language models like Fireworks, Groq, Anthropic, Together AI, Hugging Face, and Nvidia AI Endpoints.

    pip install scrapegraphai[other-language-models]
    
  • Semantic Options: this group includes tools for advanced semantic processing, such as Graphviz.

    pip install scrapegraphai[more-semantic-options]
    
  • Browsers Options: this group includes additional browser management tools/services, such as Browserbase.

    pip install scrapegraphai[more-browser-options]
    

💻 Usage

There are multiple standard scraping pipelines that can be used to extract information from a website (or local file).

The most common one is the SmartScraperGraph, which extracts information from a single page given a user prompt and a source URL.

import json
from scrapegraphai.graphs import SmartScraperGraph

# Define the configuration for the scraping pipeline
graph_config = {
    "llm": {
        "api_key": "YOUR_OPENAI_APIKEY",
        "model": "openai/gpt-4o-mini",
    },
    "verbose": True,
    "headless": False,
}

# Create the SmartScraperGraph instance
smart_scraper_graph = SmartScraperGraph(
    prompt="Find some information about what does the company do, the name and a contact email.",
    source="https://scrapegraphai.com/",
    config=graph_config
)

# Run the pipeline
result = smart_scraper_graph.run()
print(json.dumps(result, indent=4))

The output will be a dictionary like the following:

{
    "company": "ScrapeGraphAI",
    "name": "ScrapeGraphAI Extracting content from websites and local documents using LLM",
    "contact_email": "contact@scrapegraphai.com"
}

There are other pipelines that can be used to extract information from multiple pages, generate Python scripts, or even generate audio files.

Pipeline Name Description
SmartScraperGraph Single-page scraper that only needs a user prompt and an input source.
SearchGraph Multi-page scraper that extracts information from the top n search results of a search engine.
SpeechGraph Single-page scraper that extracts information from a website and generates an audio file.
ScriptCreatorGraph Single-page scraper that extracts information from a website and generates a Python script.
SmartScraperMultiGraph Multi-page scraper that extracts information from multiple pages given a single prompt and a list of sources.
ScriptCreatorMultiGraph Multi-page scraper that generates a Python script for extracting information from multiple pages and sources.

For each of these graphs there is the multi version. It allows to make calls of the LLM in parallel.

It is possible to use different LLM through APIs, such as OpenAI, Groq, Azure and Gemini, or local models using Ollama.

Remember to have Ollama installed and download the models using the ollama pull command, if you want to use local models.

🔍 Demo

Official streamlit demo:

My Skills

Try it directly on the web using Google Colab:

Open In Colab

📖 Documentation

The documentation for ScrapeGraphAI can be found here.

Check out also the Docusaurus here.

🏆 Sponsors

🤝 Contributing

Feel free to contribute and join our Discord server to discuss with us improvements and give us suggestions!

Please see the contributing guidelines.

My Skills My Skills My Skills

📈 Telemetry

We collect anonymous usage metrics to enhance our package's quality and user experience. The data helps us prioritize improvements and ensure compatibility. If you wish to opt-out, set the environment variable SCRAPEGRAPHAI_TELEMETRY_ENABLED=false. For more information, please refer to the documentation here.

❤️ Contributors

Contributors

🎓 Citations

If you have used our library for research purposes please quote us with the following reference:

  @misc{scrapegraph-ai,
    author = {Marco Perini, Lorenzo Padoan, Marco Vinciguerra},
    title = {Scrapegraph-ai},
    year = {2024},
    url = {https://github.com/VinciGit00/Scrapegraph-ai},
    note = {A Python library for scraping leveraging large language models}
  }

Authors

Authors_logos

Contact Info
Marco Vinciguerra Linkedin Badge
Marco Perini Linkedin Badge
Lorenzo Padoan Linkedin Badge

📜 License

ScrapeGraphAI is licensed under the MIT License. See the LICENSE file for more information.

Acknowledgements

  • We would like to thank all the contributors to the project and the open-source community for their support.
  • ScrapeGraphAI is meant to be used for data exploration and research purposes only. We are not responsible for any misuse of the library.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scrapegraphai-1.27.0b8.tar.gz (3.5 MB view details)

Uploaded Source

Built Distribution

scrapegraphai-1.27.0b8-py3-none-any.whl (165.6 kB view details)

Uploaded Python 3

File details

Details for the file scrapegraphai-1.27.0b8.tar.gz.

File metadata

  • Download URL: scrapegraphai-1.27.0b8.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for scrapegraphai-1.27.0b8.tar.gz
Algorithm Hash digest
SHA256 df7f46d0a551b40759a77ddcd44b5bb386da71d1d389f848eec888fbe3c61b90
MD5 bb9d43c76583c2057d83165b2a5760a2
BLAKE2b-256 5c415177b9df127d8ea84896838c72976f60bd197f88b22a98d9d4a31ca292c3

See more details on using hashes here.

File details

Details for the file scrapegraphai-1.27.0b8-py3-none-any.whl.

File metadata

File hashes

Hashes for scrapegraphai-1.27.0b8-py3-none-any.whl
Algorithm Hash digest
SHA256 0f64db207aa99ceac037c9bef89b6a63b63be3de88cda4a2537186e7d21fe76c
MD5 4796cc3e583e31e625380a9578731bda
BLAKE2b-256 dc38d2485fd683dfeb6358b50b7a11e3c75969a95dd5745e5a59c1f4f6f936c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page