A python package with implementations of Machine Learning algorithms from scratch.
Project description
ScratchML
A python package with implementations of Machine Learning algorithms from scratch.
Contents
Algorithms Implemented:
Regression:
- Simple Linear Regression (
scratchml.regression.SimpleLinearRegression
) - Multiple Linear Regression (
scratchml.regression.MultipleLinearRegression
)
Classification:
- Logistic Regression (
scratchml.classification.LogisticRegression
) - Support Vector Machine (
scratchml.classification.SVM
) - K-Nearest Neighbors (
scratchml.classification.KNN
)
Clustering:
- KMeans Clustering (
scratchml.clustering.KMeans
) - KMedoids Clustering (
scratchml.clustering.KMedoids
)
Neural Networks:
- Perceptron (
scratchml.nn.Perceptron
)
Installing:
The project is available as a package on PyPI - ScratchML
To install it using pip:
pip install scratchml
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scratchml-0.4.tar.gz
(9.1 kB
view details)
Built Distribution
scratchml-0.4-py3-none-any.whl
(17.1 kB
view details)
File details
Details for the file scratchml-0.4.tar.gz
.
File metadata
- Download URL: scratchml-0.4.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26436295da5e9be4197dec9722e21b61b6bbe9ae42e4bb4cd0be66d5eb879755 |
|
MD5 | 741f2ebba7b80856205801d4b0e5a988 |
|
BLAKE2b-256 | 69aa69415eb18a225c591776d0393d2516582eef52f8120174849bdd410b5d81 |
File details
Details for the file scratchml-0.4-py3-none-any.whl
.
File metadata
- Download URL: scratchml-0.4-py3-none-any.whl
- Upload date:
- Size: 17.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 052d957b7481bf0f3709949220a8d7ed99eb5bdb982b14f4a1313c0f1a5a51f3 |
|
MD5 | 398bb6de7d3e8e9628d475498d1f5cdb |
|
BLAKE2b-256 | 2407936c7939224c0d5656b0066d2885efc60179424a87e10ca2b00b61c24a3e |