Skip to main content

Time-dependent functions of spin-weighted spherical harmonics

Project description

Test and deploy Documentation Status PyPI Version Conda Version MIT License DOI


Python/numba code for manipulating time-dependent functions of spin-weighted spherical harmonics

Citing this code

If you use this code for academic work (I can't actually imagine any other use for it), please cite the latest version that you used in your publication. The DOI is:

Also please cite the papers for/by which it was produced:

Bibtex entries for these articles can be found here. It might also be nice of you to provide a link directly to this source code.

Quick start

Assuming you have the anaconda distribution of python (the preferred distribution for scientific applications), installation is as simple as

conda update -y --all
conda install -c conda-forge scri

If you need to install anaconda first, it's very easy and doesn't require root permissions. Just download and follow the instructions — particularly setting your PATH. Also, make sure PYTHONPATH and PYTHONHOME are not set. Ensure that it worked by running python --version. It should say something about anaconda; if not, you probably forgot to set your PATH. Now just run the installation command above.

Then, in python, you can check to make sure installation worked with

import scri
w = scri.WaveformModes()

Now, w is an object to contain time and waveform data, as well as various related pieces of information -- though it is trivial in this case, because we haven't given it any data. For more information, see the docstrings of scri, scri.WaveformModes, etc.


The dependencies should be taken care of automatically by the quick installation instructions above. However, if you run into problems (or if you foolishly decide not to use anaconda to install things), it may be because you are missing some or all of these:

All these dependencies are installed automatically when you use the conda command described above. The anaconda distribution can co-exist with your system python with no trouble -- you simply add the path to anaconda before your system executables. In fact, your system python probably needs to stay crusty and old so that your system doesn't break, while you want to use a newer version of python to actually run fancy new code like this. This is what anaconda does for you. It installs into your home directory, so it doesn't require root access. It can be uninstalled easily, since it exists entirely inside its own directory. And updates are trivial.

"Manual" installation

The instructions in the "Quick Start" section above should be sufficient, as there really is no good reason not to use anaconda. You will occasionally hear people complain about it not working; these people have not installed it correctly, and have other python-related environment variables that shouldn't be there. You don't want to be one of those people.

Nonetheless, it is possible to install these packages without anaconda -- in principle. The main hurdle to overcome is numba. Maybe there are nice ways to install numba without anaconda. I don't know. I don't care. But if you're awesome enough to do that, you're awesome enough to install all the other dependencies without advice from me. But in short, you can either use the files as usual, or just use pip:

pip install git+git://
pip install git+git://
pip install git+git://
pip install git+git://

And since you're just soooo cool, you already know that the --user flag is missing from those commands because you're presumably using a virtual environment, hotshot.

(If you're really not that cool, and aren't using virtualenv, you might think you should sudo those commands. But there's no need if you just use the --user flag instead. That installs packages into your user directory, which is usually a better idea.)

Note that spinsfast depends (for both building and running) on fftw. If you run into build problems with spinsfast, it probably can't find the header or library for fftw. See the documentation of my copy of spinsfast here for suggestions on solving that problem. Of course, with conda, fftw is installed in the right place from my channel automatically.


Tutorials and automatically generated API documentation are available on Read the Docs: scri.


This code is, of course, hosted on github; because it is an open-source project, the hosting is free, and all the wonderful features of github are available, including free wiki space and web page hosting, pull requests, a nice interface to the git logs, etc.

Every change in this code is auomatically tested on Travis-CI. This is a free service (for open-source projects like this one), which integrates beautifully with github, detecting each commit and automatically re-running the tests. The code is downloaded and installed fresh each time, and then tested, on both versions of python (2 and 3). This ensures that no change I make to the code breaks either installation or any of the features that I have written tests for.

Every change to this code is also recompiled automatically, bundled into a conda package, and made available for download from Again, because this is an open-source project all those nice features are free.

The work of creating this code was supported in part by the Sherman Fairchild Foundation and by NSF Grants No. PHY-1306125 and AST-1333129.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scri-2022.3.6.tar.gz (117.0 kB view hashes)

Uploaded source

Built Distribution

scri-2022.3.6-py3-none-any.whl (127.1 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page