Skip to main content

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.

Project description

scs4onnx

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • If the same constant tensor is found by scanning the entire graph for Constant values, it is aggregated into a single constant tensor.
  • Ignore scalar values.
  • Ignore variables.
  • Finally, create a Fork of onnx-simplifier and merge this process just before the onnx file output process -> Temporarily abandoned because it turned out that the onnx-simplifier specification needed to be changed in a major way.
  • Implementation of a specification for separating the weight of a specified OP name to an external file.
  • Implementation of a specification for separating the weight of a specified Constant name to an external file.
  • Added option to downcast from Float64 to Float32 and INT64 to INT32 to attempt size compression.
  • Post an issue of onnx-simplifier. Excessive bloating of ONNX files due to over-efficient conversion of "Tile" to constants (Protocol Buffers .onnx > 2GB) #178
  • Add sample onnx models.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scs4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ scs4onnx -h

usage:
  scs4onnx [-h]
  [--mode {shrink,npy}]
  [--forced_extraction_op_names FORCED_EXTRACTION_OP_NAMES]
  [--forced_extraction_constant_names FORCED_EXTRACTION_CONSTANT_NAMES]
  [--disable_auto_downcast]
  [--non_verbose]
  input_onnx_file_path output_onnx_file_path


positional arguments:
  input_onnx_file_path
        Input onnx file path.

  output_onnx_file_path
        Output onnx file path.

optional arguments:
  -h, --help
        show this help message and exit

  --mode {shrink,npy}
        Constant Value Compression Mode.
        shrink: Share constant values inside the model as much as possible.
                The model size is slightly larger because
                some shared constant values remain inside the model,
                but performance is maximized.
        npy:    Outputs constant values used repeatedly in the model to an
                external file .npy. Instead of the smallest model body size,
                the file loading overhead is greater.
        Default: shrink

  --forced_extraction_op_names FORCED_EXTRACTION_OP_NAMES
        Extracts the constant value of the specified OP name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_constant_names at the same time.
        e.g. --forced_extraction_op_names aaa bbb ccc

  --forced_extraction_constant_names FORCED_EXTRACTION_CONSTANT_NAMES
        Extracts the constant value of the specified Constant name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_op_names at the same time.
        e.g. --forced_extraction_constant_names aaa bbb ccc

  --disable_auto_downcast
        Disables automatic downcast processing from Float64 to Float32 and INT64
        to INT32. Try enabling it and re-running it if you encounter type-related
        errors.

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scs4onnx import shrinking
>>> help(shrinking)

Help on function shrinking in module scs4onnx.onnx_shrink_constant:

shrinking(
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  mode: Union[str, NoneType] = 'shrink',
  forced_extraction_op_names: List[str] = [],
  forced_extraction_constant_names: List[str] = [],
  disable_auto_downcast: Union[bool, NoneType] = False
  non_verbose: Union[bool, NoneType] = False
) -> Tuple[onnx.onnx_ml_pb2.ModelProto, str]

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    mode: Optional[str]
        Constant Value Compression Mode.
        'shrink': Share constant values inside the model as much as possible.
            The model size is slightly larger because some shared constant values remain
            inside the model, but performance is maximized.
        'npy': Outputs constant values used repeatedly in the model to an external file .npy.
            Instead of the smallest model body size, the file loading overhead is greater.
        Default: shrink

    forced_extraction_op_names: List[str]
        Extracts the constant value of the specified OP name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_constant_names at the same time.
        e.g. ['aaa','bbb','ccc']

    forced_extraction_constant_names: List[str]
        Extracts the constant value of the specified Constant name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_op_names at the same time.
        e.g. ['aaa','bbb','ccc']

    disable_auto_downcast: Optional[bool]
        Disables automatic downcast processing from Float64 to Float32 and INT64 to INT32.
        Try enabling it and re-running it if you encounter type-related errors.
        Default: False

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    shrunken_graph: onnx.ModelProto
        Shrunken onnx ModelProto

    npy_file_paths: List[str]
        List of paths to externally output .npy files.
        An empty list is always returned when in 'shrink' mode.

3. CLI Execution

$ scs4onnx input.onnx output.onnx --mode shrink

image

4. In-script Execution

4-1. When an onnx file is used as input

If output_onnx_file_path is not specified, no .onnx file is output.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
  mode='npy',
  non_verbose=False
)

image

4-2. When entering the onnx.ModelProto

onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  onnx_graph=graph,
  mode='npy',
  non_verbose=True
)

5. Sample

5-1. shrink mode sample

  • 297.8MB -> 67.4MB (.onnx)

    $ scs4onnx gmflow_sintel_480x640.onnx gmflow_sintel_480x640_opt.onnx
    

    image image

  • 1.8GB -> 886.8MB (.onnx)

    $ scs4onnx hitnet_sf_finalpass_720x960.onnx hitnet_sf_finalpass_720x960_opt.onnx
    

    image

  • 1.8GB -> 2.1MB (.onnx) + 884.7MB (.npy)

    $ scs4onnx \
    hitnet_sf_finalpass_720x960.onnx \
    hitnet_sf_finalpass_720x960_opt.onnx \
    --forced_extraction_op_names GatherElements_660
    

    image image image

  • 297.8MB -> 21.3MB (.onnx) + 46.1MB (.npy)

    $ scs4onnx \
    gmflow_sintel_480x640.onnx \
    gmflow_sintel_480x640_opt.onnx \
    --forced_extraction_constant_names 1646
    

    image image image

5-2. npy mode sample

  • 297.8MB -> 21.3MB (.onnx)

    image image

5-3. .npy file view

$ python
>>> import numpy as np
>>> param = np.load('gmflow_sintel_480x640_shrunken_exported_1646.npy')
>>> param.shape
(8, 1200, 1200)
>>> param
array([[[   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        ...,
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.]]], dtype=float32)

6. Sample ONNX models

  1. gmflow_sintel_480x640.onnx - Optical flow calculation - LICENSE Apache License 2.0
  2. hitnet_sf_finalpass_720x960.onnx - Stereo depth estimation - LICENSE Apache License 2.0

7. Reference

  1. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  2. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  3. https://github.com/PINTO0309/sne4onnx
  4. https://github.com/PINTO0309/snd4onnx
  5. https://github.com/PINTO0309/snc4onnx
  6. https://github.com/PINTO0309/sog4onnx
  7. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scs4onnx-1.0.16.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

scs4onnx-1.0.16-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file scs4onnx-1.0.16.tar.gz.

File metadata

  • Download URL: scs4onnx-1.0.16.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for scs4onnx-1.0.16.tar.gz
Algorithm Hash digest
SHA256 9c93f75ffe4590babbe581bba65474de714232e5a4331ca4a2ca19a41ab49467
MD5 54769bf19221599afdee9e8f7f62bd34
BLAKE2b-256 971a48de5dee8164921465bcb1fd58087385263fff243015b130e2dc21e4c764

See more details on using hashes here.

File details

Details for the file scs4onnx-1.0.16-py3-none-any.whl.

File metadata

  • Download URL: scs4onnx-1.0.16-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for scs4onnx-1.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 a2590f9a5627d871d507c06a404b8a72240b3bd55413edf7555f5a31b493d5ff
MD5 bdbd468a86d69798472b1239d3c80b68
BLAKE2b-256 ad44be85b0af36f821dd619ff94e3ab202d19d6bcf04fbd310636fb5a5294be6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page