A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.
Project description
scs4onnx
A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.
Key concept
- If the same constant tensor is found by scanning the entire graph for Constant values, it is aggregated into a single constant tensor.
- Ignore scalar values.
- Ignore variables.
- Finally, create a Fork of onnx-simplifier and merge this process just before the onnx file output process
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scs4onnx
1-2. Docker
### docker pull
$ docker pull pinto0309/scs4onnx:latest
### docker build
$ docker build -t pinto0309/scs4onnx:latest .
### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/scs4onnx:latest
$ cd /workdir
2. CLI Usage
$ scs4onnx -h
usage:
scs4onnx [-h] [--mode {shrink,npy}] [--non_verbose] input_onnx_file_path output_onnx_file_path
positional arguments:
input_onnx_file_path
Input onnx file path.
output_onnx_file_path
Output onnx file path.
optional arguments:
-h, --help show this help message and exit
--mode {shrink,npy} Constant Value Compression Mode.
shrink: Share constant values inside the model as much as possible.
The model size is slightly larger because
some shared constant values remain inside the model,
but performance is maximized.
npy: Outputs constant values used repeatedly in the model to an
external file .npy. Instead of the smallest model body size,
the file loading overhead is greater.
Default: shrink
--non_verbose Do not show all information logs. Only error logs are displayed.
3. In-script Usage
$ python
>>> from scs4onnx import shrinking
>>> help(shrinking)
Help on function shrinking in module scs4onnx.onnx_shrink_constant:
shrinking(
input_onnx_file_path: Union[str, NoneType] = '',
output_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
mode: Union[str, NoneType] = 'shrink',
non_verbose: Union[bool, NoneType] = False
) -> Tuple[onnx.onnx_ml_pb2.ModelProto, str]
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
output_onnx_file_path: Optional[str]
Outpu onnx file path.
If output_onnx_file_path is not specified, no .onnx file is output.
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
mode: Optional[str]
Constant Value Compression Mode.
'shrink': Share constant values inside the model as much as possible.
The model size is slightly larger because some shared constant values remain
inside the model, but performance is maximized.
'npy': Outputs constant values used repeatedly in the model to an external file .npy.
Instead of the smallest model body size, the file loading overhead is greater.
Default: shrink
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
shrunken_graph: onnx.ModelProto
Shrunken onnx ModelProto
npy_file_paths: List[str]
List of paths to externally output .npy files.
An empty list is always returned when in 'shrink' mode.
3. CLI Execution
$ scs4onnx input.onnx output.onnx --mode shrink
4. In-script Execution
4-1. When an onnx file is used as input
If output_onnx_file_path
is not specified, no .onnx file is output.
from scs4onnx import shrinking
shrunk_graph, npy_file_paths = shrinking(
input_onnx_file_path='input.onnx',
output_onnx_file_path='output.onnx',
mode='npy',
non_verbose=False
)
4-2. When entering the onnx.ModelProto
onnx_graph
If specified, ignore input_onnx_file_path
and process onnx_graph
.
from scs4onnx import shrinking
shrunk_graph, npy_file_paths = shrinking(
onnx_graph=graph,
mode='npy',
non_verbose=True
)
5. Sample
5-1. shrink
mode sample
-
297.8MB -> 67.4MB
5-2. npy
mode sample
-
297.8MB -> 21.3MB
5-3. .npy
file view
$ python
>>> import numpy as np
>>> param = np.load('gmflow_sintel_480x640_shrunken_exported_1646.npy')
>>> param.shape
(8, 1200, 1200)
>>> param
array([[[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[-100., -100., -100., ..., 0., 0., 0.],
[-100., -100., -100., ..., 0., 0., 0.],
[-100., -100., -100., ..., 0., 0., 0.]]], dtype=float32)
6. Reference
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scs4onnx-1.0.7.tar.gz
(7.0 kB
view details)
Built Distribution
File details
Details for the file scs4onnx-1.0.7.tar.gz
.
File metadata
- Download URL: scs4onnx-1.0.7.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f9fd46739c44cfd8b282ce68cb5d82e115da2a47256914888c0be5c813d197b |
|
MD5 | dd2d6bcd7e0377e4ac8abb8f0083a249 |
|
BLAKE2b-256 | ba987e52fed111e6ecd3d7a0298afad64c227da06baef3403cea8a737f8df95b |
File details
Details for the file scs4onnx-1.0.7-py3-none-any.whl
.
File metadata
- Download URL: scs4onnx-1.0.7-py3-none-any.whl
- Upload date:
- Size: 7.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee12f36be862c36d121787aacfa4aff8c3df1764846e94fe8f063bd8e3974356 |
|
MD5 | cbe7aed3ab4548b1609b048d29ba6113 |
|
BLAKE2b-256 | 03a9bbf43b445f4666fa9de5495de73d457b5d70ee1e98544acc0295d3776dca |