Skip to main content

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.

Project description

scs4onnx

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.

Downloads GitHub PyPI CodeQL

Key concept

  • If the same constant tensor is found by scanning the entire graph for Constant values, it is aggregated into a single constant tensor.
  • Ignore scalar values.
  • Ignore variables.
  • Finally, create a Fork of onnx-simplifier and merge this process just before the onnx file output process -> Temporarily abandoned because it turned out that the onnx-simplifier specification needed to be changed in a major way.
  • Implementation of a specification for separating the weight of a specified OP name to an external file.
  • Implementation of a specification for separating the weight of a specified Constant name to an external file.
  • Added option to downcast from Float64 to Float32 and INT64 to INT32 to attempt size compression.
  • Final work-around idea for breaking the 2GB limit, since the internal logic of onnx has a Protocol Buffers limit of 2GB checked. Recombine after optimization. Splitting and merging seems like it would be easy. For each partitioned onnx component, optimization is performed in the order of onnx-simplifier → scs4onnx to optimize the structure while keeping the buffer size to a minimum, and then the optimized components are recombined to reconstruct the whole graph. Finally, run scs4onnx again on the reconstructed, optimized overall graph to further reduce the model-wide constant.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scs4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/scs4onnx:latest

### docker build
$ docker build -t pinto0309/scs4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/scs4onnx:latest
$ cd /workdir

2. CLI Usage

$ scs4onnx -h

usage:
  scs4onnx [-h]
  [--mode {shrink,npy}]
  [--forced_extraction_op_names FORCED_EXTRACTION_OP_NAMES]
  [--non_verbose]
  input_onnx_file_path output_onnx_file_path


positional arguments:
  input_onnx_file_path
                        Input onnx file path.
  output_onnx_file_path
                        Output onnx file path.

optional arguments:
  -h, --help
                        show this help message and exit
  --mode {shrink,npy}
                        Constant Value Compression Mode.
                        shrink: Share constant values inside the model as much as possible.
                                The model size is slightly larger because
                                some shared constant values remain inside the model,
                                but performance is maximized.
                        npy:    Outputs constant values used repeatedly in the model to an
                                external file .npy. Instead of the smallest model body size,
                                the file loading overhead is greater.
                        Default: shrink
  --forced_extraction_op_names FORCED_EXTRACTION_OP_NAMES
                        Extracts the constant value of the specified OP name to .npy
                        regardless of the mode specified.
                        Specify the name of the OP, separated by commas.
                        e.g. --forced_extraction_op_names aaa,bbb,ccc
  --non_verbose
                        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scs4onnx import shrinking
>>> help(shrinking)

Help on function shrinking in module scs4onnx.onnx_shrink_constant:

shrinking(
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  mode: Union[str, NoneType] = 'shrink',
  forced_extraction_op_names: List[str] = [],
  non_verbose: Union[bool, NoneType] = False
) -> Tuple[onnx.onnx_ml_pb2.ModelProto, str]

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Outpu onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    mode: Optional[str]
        Constant Value Compression Mode.
        'shrink': Share constant values inside the model as much as possible.
            The model size is slightly larger because some shared constant values remain
            inside the model, but performance is maximized.
        'npy': Outputs constant values used repeatedly in the model to an external file .npy.
            Instead of the smallest model body size, the file loading overhead is greater.
        Default: shrink

    forced_extraction_op_names: List[str]
        Extracts the constant value of the specified OP name to .npy
        regardless of the mode specified. e.g. ['aaa','bbb','ccc']

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    shrunken_graph: onnx.ModelProto
        Shrunken onnx ModelProto

    npy_file_paths: List[str]
        List of paths to externally output .npy files.
        An empty list is always returned when in 'shrink' mode.

3. CLI Execution

$ scs4onnx input.onnx output.onnx --mode shrink

image

4. In-script Execution

4-1. When an onnx file is used as input

If output_onnx_file_path is not specified, no .onnx file is output.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
  mode='npy',
  non_verbose=False
)

image

4-2. When entering the onnx.ModelProto

onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  onnx_graph=graph,
  mode='npy',
  non_verbose=True
)

5. Sample

5-1. shrink mode sample

  • 297.8MB -> 67.4MB

    image image

5-2. npy mode sample

  • 297.8MB -> 21.3MB

    image image

5-3. .npy file view

$ python
>>> import numpy as np
>>> param = np.load('gmflow_sintel_480x640_shrunken_exported_1646.npy')
>>> param.shape
(8, 1200, 1200)
>>> param
array([[[   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        ...,
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.]]], dtype=float32)

6. Reference

  1. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  2. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scs4onnx-1.0.9.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

scs4onnx-1.0.9-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file scs4onnx-1.0.9.tar.gz.

File metadata

  • Download URL: scs4onnx-1.0.9.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for scs4onnx-1.0.9.tar.gz
Algorithm Hash digest
SHA256 14b85a65685bca9068bcdb1dc916861fc2128bea9acc539eeaab46c07d8bd19d
MD5 2bf831593a58e20861a7f8cb01e5c955
BLAKE2b-256 87b7dc25ec5ed4aa33abe850d993442acb43c0a962c9e9ef1efef1013fe692d5

See more details on using hashes here.

File details

Details for the file scs4onnx-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: scs4onnx-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for scs4onnx-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 4978e2e075ecd85a26cbaf14bb1b949ff9bd7258e042b8930dc5060757fa4470
MD5 195f6f72f971c04674a95df9a51fccda
BLAKE2b-256 4794b47b93b7efff388c0d16bd8dca8fcc769571280e32049b689fb63157b164

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page