Self Supervised Tools for Single Cell Data
Project description
scself
Self Supervised Tools for Single Cell Data
Molecular Cross-Validation for PCs arXiv manuscript
mcv(
count_data,
n=1,
n_pcs=100,
random_seed=800,
p=0.5,
metric='mse',
standardization_method='log',
metric_kwargs={},
silent=False,
verbose=None,
zero_center=False
)
Noise2Self for kNN selection arXiv manuscript
def noise2self(
count_data,
neighbors=None,
npcs=None,
metric='euclidean',
loss='mse',
loss_kwargs={},
return_errors=False,
connectivity=False,
standardization_method='log',
pc_data=None,
chunk_size=10000,
verbose=None
)
Implemented as in DEWÄKSS
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scself-0.4.3.tar.gz
(28.8 kB
view details)
Built Distribution
scself-0.4.3-py3-none-any.whl
(40.3 kB
view details)
File details
Details for the file scself-0.4.3.tar.gz
.
File metadata
- Download URL: scself-0.4.3.tar.gz
- Upload date:
- Size: 28.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45b21ef51194e7ed2f16928dbd0951c2da8470c82a104d716ea6585aba480e88 |
|
MD5 | 40dfa80ae84004dc60f4b69941a71f36 |
|
BLAKE2b-256 | c39c6449e88bb6405192db97779119abfa68bfac7d732b089a89e21d3d4d8323 |
File details
Details for the file scself-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: scself-0.4.3-py3-none-any.whl
- Upload date:
- Size: 40.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6afc0100d3d5d86c21f57bfab144e5e8ef48ed918311410d8f130522e73d906a |
|
MD5 | 76834fafec55a794c8172ff5f9c4fc27 |
|
BLAKE2b-256 | 873c6f5ef411d06284adfe4185c73febea20d4870dbee8cf006e179fed13d730 |