Skip to main content

single cell VR preprocess

Project description

singlecellvr

http://www.singlecellvr.com http://www.singlecellvr.com

Single cell visualization using Virtual Reality (VR)

http://www.singlecellvr.com/

SingleCellVR can be used with our preprocessed datasets found at the link above or by following the steps below to process your own dataset.

SingleCellVR Preprocess:

Prepare your data for the visualization on Single Cell VR website https://singlecellvr.com/

Installation

Install and update using pip:
pip install scvr

Usage

$ scvr --help

usage: scvr [-h] -f FILE -t {scanpy,paga,seurat,stream} -a ANNOTATIONS [-g GENES] [-o OUTPUT]

scvr Parameters

required arguments:
  -f FILE, --filename FILE
                        Analysis result file name (default: None)
  -t {scanpy,paga,seurat,stream}, --toolname {scanpy,paga,seurat,stream}
                        Tool used to generate the analysis result (default: None)
  -a ANNOTATIONS, --annotations ANNOTATIONS
                        Annotation file name. It contains the cell annotation key(s) 
                        to visualize in one column (default: None)

optional arguments:

  -g GENES, --genes GENES
                        Gene list file name. It contains the genes 
                        to visualize in one column (default: None)
  -o OUTPUT, --output OUTPUT
                        Output folder name (default: scvr_report)
  -h, --help            show this help message and exit

Examples:

Scanpy:

To get single cell VR report for Scanpy :

scvr -f ./scanpy_result/scanpy_10xpbmc.h5ad -t scanpy -a annotations.txt -g genes.txt -o scanpy_report
  • Input files can be found here
  • To generate the scanpy_10xpbmc.h5ad, check out Scanpy analysis. (Make sure set n_components=3 in sc.tl.umap(adata,n_components=3))

PAGA:

To get single cell VR report for PAGA :

scvr -f ./paga_result/paga3d_paul15.h5ad -t paga -a annotations.txt -g genes.txt -o paga_report
  • Input files can be found here
  • To generate the paga3d_paul15.h5ad, check out PAGA analysis. (Make sure set n_components=3 in sc.tl.umap(adata,n_components=3))

Seurat:

To get single cell VR report for Seurat :

scvr -f ./seurat_result/seurat3d_10xpbmc.loom -t seurat -a annotations.txt -g genes.txt -o seurat_report
  • Input files can be found here
  • To generate the seurat3d_10xpbmc.loom, check out Seurat analysis. (Make sure set n.components = 3 in pbmc <- RunUMAP(pbmc, dims = 1:10, n.components = 3))

Velocity:

To get single cell velocity report for scvelo:

scvr -t velocity -f examples/pancrease_velocity.h5ad -a clusters

STREAM:

To get single cell VR report for STREAM :

scvr -f ./stream_result/stream_nestorowa16.pkl -t stream -a annotations.txt -g genes.txt -o stream_report
  • Input files can be found here
  • To generate the stream_nestorowa16.pkl, check out STREAM analysis.

Or use STREAM package, e.g.:

import stream as st
st.save_vr_report(adata,
                  ann_list=['label','kmeans','branch_id_alias','S4_pseudotime'],
                  gene_list=['Gata1','Car2','Epx','Mfsd2b','Mpo','Emb','Flt3','Dntt'],
                  file_name='stream_report')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scvr-1.1.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

scvr-1.1-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file scvr-1.1.tar.gz.

File metadata

  • Download URL: scvr-1.1.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for scvr-1.1.tar.gz
Algorithm Hash digest
SHA256 40106c6cda95b4bb6275049f425a9174ed9f8b72d2838dbd140151e61aaa15e0
MD5 5c39f7490554983e4a52d6c99c009480
BLAKE2b-256 717a95cbc9e67ce19df3917c454b740a38bd390f9f42de04edc80a616cba3eef

See more details on using hashes here.

File details

Details for the file scvr-1.1-py3-none-any.whl.

File metadata

  • Download URL: scvr-1.1-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for scvr-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 09f655da2086351a6568b33dc484f431b08d2d3458cd72d656c6227744a66e50
MD5 fc68ab4abcc789067dd2fa2c41b9ac64
BLAKE2b-256 4ef24995b2ef9cbf30c887fac0bd476f43f5e7c649f1cd0cef9b27a1d38233f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page