Skip to main content

single cell VR preprocess

Project description

SingleCellVR Preprocess:

Prepare your data for the visualization on Single Cell VR website https://singlecellvr.com/

Installation

Install and update using pip:
pip install scvr-prep

Usage

$ scvr_prep --help

Usage: scvr_prep [-h] -f FILE -t {paga,seurat,stream} [-a ANNOTATIONS] [-g GENES] [-o OUTPUT]

scvr_prep Parameters

required arguments:
  -f FILE, --filename FILE
                        Analysis result file name (default: None)
  -t {paga,seurat,stream}, --toolname {paga,seurat,stream}
                        Tool used to generate the analysis result (default: None)

optional arguments:
  -a ANNOTATIONS, --annotations ANNOTATIONS
                        Annotation file name. It contains the cell
                        annotation(s) used to color cells (default: None)
  -g GENES, --genes GENES
                        Gene list file name. It contains the genes to
                        visualize in one column (default: None)
  -o OUTPUT, --output OUTPUT
                        Output folder name (default: vr_report)
  -h, --help            show this help message and exit

Examples:

PAGA:

To get single cell VR report for PAGA :

scvr_prep -f ./paga_result/paga3d_paul15.h5ad -t paga -a annotations.txt -g genes.txt -o paga_report
  • Input files can be found here
  • To generate the paga3d_paul15.h5ad, check out PAGA analysis. (Make sure set n_components=3 in sc.tl.umap(adata,n_components=3))

Seurat:

To get single cell VR report for Seurat :

scvr_prep -f ./seurat_result/seurat3d_10xpbmc.loom -t seurat -a annotations.txt -g genes.txt -o seurat_report
  • Input files can be found here
  • To generate the seurat3d_10xpbmc.loom, check out Seurat analysis. (Make sure set n.components = 3 in pbmc <- RunUMAP(pbmc, dims = 1:10, n.components = 3))

STREAM:

To get single cell VR report for STREAM :

scvr_prep -f ./stream_result/stream_nestorowa16.pkl -t stream -g genes.txt -o stream_report
  • Input files can be found here
  • To generate the stream_nestorowa16.pkl, check out STREAM analysis.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scvr_prep-1.1.1.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

scvr_prep-1.1.1-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file scvr_prep-1.1.1.tar.gz.

File metadata

  • Download URL: scvr_prep-1.1.1.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for scvr_prep-1.1.1.tar.gz
Algorithm Hash digest
SHA256 4a55bcbe71e6168389e1f2c39b21f1ebf2130b0987e70f680c79fb6dfdb2a421
MD5 58397d499e18ac4c12f3511f22e833c2
BLAKE2b-256 e38864ccdddfd55a3dd622a40c3ef3ac9fcb8e04249bb16d3e5931bd83b94107

See more details on using hashes here.

File details

Details for the file scvr_prep-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: scvr_prep-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 8.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for scvr_prep-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 223a50bad5e131796ff1dc298e7f17a68e8e8ba0e6263caff09bf67e3b1dd3d9
MD5 93e904d916aeb0720e8cc0c087420caa
BLAKE2b-256 689cb398c0486ef395b9a280104ebe474e60a1c3528629f545420dd84b08158f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page