single cell VR preprocess
Project description
SingleCellVR Preprocess:
Prepare your data for the visualization on Single Cell VR website https://singlecellvr.com/
Installation
Install and update using pip:
pip install scvr-prep
Usage
$ scvr_prep --help
Usage: scvr_prep [-h] -f FILE -t {paga,seurat,stream} [-a ANNOTATIONS] [-g GENES] [-o OUTPUT]
scvr_prep Parameters
required arguments:
-f FILE, --filename FILE
Analysis result file name (default: None)
-t {paga,seurat,stream}, --toolname {paga,seurat,stream}
Tool used to generate the analysis result (default: None)
optional arguments:
-a ANNOTATIONS, --annotations ANNOTATIONS
Annotation file name. It contains the cell
annotation(s) used to color cells (default: None)
-g GENES, --genes GENES
Gene list file name. It contains the genes to
visualize in one column (default: None)
-o OUTPUT, --output OUTPUT
Output folder name (default: vr_report)
-h, --help show this help message and exit
Examples:
PAGA:
To get single cell VR report for PAGA :
scvr_prep -f ./paga_result/paga3d_paul15.h5ad -t paga -a annotations.txt -g genes.txt -o paga_report
- Input files can be found here
- To generate the
paga3d_paul15.h5ad
, check out PAGA analysis. (Make sure setn_components=3
insc.tl.umap(adata,n_components=3)
)
Seurat:
To get single cell VR report for Seurat :
scvr_prep -f ./seurat_result/seurat3d_10xpbmc.loom -t seurat -a annotations.txt -g genes.txt -o seurat_report
- Input files can be found here
- To generate the
seurat3d_10xpbmc.loom
, check out Seurat analysis. (Make sure setn.components = 3
inpbmc <- RunUMAP(pbmc, dims = 1:10, n.components = 3)
)
STREAM:
To get single cell VR report for STREAM :
scvr_prep -f ./stream_result/stream_nestorowa16.pkl -t stream -g genes.txt -o stream_report
- Input files can be found here
- To generate the
stream_nestorowa16.pkl
, check out STREAM analysis.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scvr_prep-1.1.1.tar.gz
(7.1 kB
view details)
Built Distribution
File details
Details for the file scvr_prep-1.1.1.tar.gz
.
File metadata
- Download URL: scvr_prep-1.1.1.tar.gz
- Upload date:
- Size: 7.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a55bcbe71e6168389e1f2c39b21f1ebf2130b0987e70f680c79fb6dfdb2a421 |
|
MD5 | 58397d499e18ac4c12f3511f22e833c2 |
|
BLAKE2b-256 | e38864ccdddfd55a3dd622a40c3ef3ac9fcb8e04249bb16d3e5931bd83b94107 |
File details
Details for the file scvr_prep-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: scvr_prep-1.1.1-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 223a50bad5e131796ff1dc298e7f17a68e8e8ba0e6263caff09bf67e3b1dd3d9 |
|
MD5 | 93e904d916aeb0720e8cc0c087420caa |
|
BLAKE2b-256 | 689cb398c0486ef395b9a280104ebe474e60a1c3528629f545420dd84b08158f |