MIT Supply Chain Python Package
Project description
SCx
MIT's Supply Chain Micromaster (SCx) Python Package
Documentation
Technical documentation can be found here.
Local Setup
Make sure you have Python 3.6.x (or higher) installed on your system. You can download it here.
- Recommended (but Optional) - Setup and activate a virtual environment:
- Install (or upgrade) virtualenv:
python3 -m pip install --upgrade virtualenv
- Create your virtualenv named
venv
:
python3 -m virtualenv venv
- Activate your virtual environment
- On Unix (Mac or Linux):
source venv/bin/activate
- On Windows:
venv\scripts\activate
- Then in your terminal:
pip install scx
Cloud Setup
Create a google account and access google colab here.
- Create a new notebook
- Install the
scx
package by adding the following to a new cell and running it:pip install scx
Getting Started
Basic Usage
from scx.optimize import Model
Examples
Simple Optimization
from scx.optimize import Model
# Create variables
product_1_amt = Model.variable(name="product_1", lowBound=0)
product_2_amt = Model.variable(name="product_2", lowBound=0)
# Initialize the model
model = Model(name="Generic_Problem", sense='maximize')
# Add the Objective Fn
model.add_objective(
fn = (product_1_amt*1)+(product_2_amt*1)
)
# Add Constraints
model.add_constraint(
name = 'input_1_constraint',
fn = product_1_amt*1+product_2_amt*2 <= 100
)
model.add_constraint(
name = 'input_2_constraint',
fn = product_1_amt*3+product_2_amt*1 <= 200
)
# Solve the model
model.solve(get_duals=True, get_slacks=True)
# Show the outputs
print(model.outputs)
Outputs:
{'status': 'Optimal', 'objective': 80.0, 'variables': {'product_1': 60.0, 'product_2': 20.0}, 'duals': {'input_1_constraint': 0.4, 'input_2_constraint': 0.2}, 'slacks': {'input_1_constraint': -0.0, 'input_2_constraint': -0.0}}
Array Based Optimization
from scx.optimize import Model
# Create variables
data=[
{
'name': 'product_1',
'input_1': 1,
'input_2': 3,
'profit': 1,
'amt': Model.variable(name="product_1", lowBound=0)
},
{
'name': 'product_2',
'input_1': 2,
'input_2': 1,
'profit': 1,
'amt': Model.variable(name="product_2", lowBound=0)
}
]
constraints = [
{
'name':'input_1',
'max_amt':100
},
{
'name':'input_2',
'max_amt':200
}
]
# Initialize the model
model = Model(name="Array_Problem", sense='maximize')
# Add the Objective Fn
model.add_objective(
fn=Model.sum([i['amt']*i['profit'] for i in data])
)
# Add Constraints
for j in constraints:
model.add_constraint(
name=f'{j["name"]}_constraint',
fn=Model.sum([i['amt']*i[j['name']] for i in data]) <= j['max_amt']
)
# Solve the model
model.solve(get_duals=True, get_slacks=True)
# Show the outputs
print(model.outputs)
Outputs:
{'status': 'Optimal', 'objective': 80.0, 'variables': {'product_1': 60.0, 'product_2': 20.0}, 'duals': {'input_1_constraint': 0.4, 'input_2_constraint': 0.2}, 'slacks': {'input_1_constraint': -0.0, 'input_2_constraint': -0.0}}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scx-1.0.2.tar.gz
(7.0 kB
view hashes)