Skip to main content

MIT Supply Chain Python Package

Project description

SCx

MIT's Supply Chain Micromaster (SCx) Python Package

Documentation

Technical documentation can be found here.

Local Setup

Make sure you have Python 3.6.x (or higher) installed on your system. You can download it here.

  • Recommended (but Optional) - Setup and activate a virtual environment:
    • Install (or upgrade) virtualenv:
    python3 -m pip install --upgrade virtualenv
    
    • Create your virtualenv named venv:
    python3 -m virtualenv venv
    
    • Activate your virtual environment
      • On Unix (Mac or Linux):
      source venv/bin/activate
      
      • On Windows:
      venv\scripts\activate
      
  • Then in your terminal:
    • pip install scx

Cloud Setup

Create a google account and access google colab here.

  • Create a new notebook
  • Install the scx package by adding the following to a new cell and running it:
    • pip install scx

Getting Started

Basic Usage

from scx.optimize import Model

Examples

Simple Optimization

from scx.optimize import Model

# Create variables
product_1_amt = Model.variable(name="product_1", lowBound=0)
product_2_amt = Model.variable(name="product_2", lowBound=0)

# Initialize the model
model = Model(name="Generic_Problem", sense='maximize')

# Add the Objective Fn
model.add_objective(
    fn = (product_1_amt*1)+(product_2_amt*1)
)

# Add Constraints
model.add_constraint(
    name = 'input_1_constraint',
    fn = product_1_amt*1+product_2_amt*2 <= 100
)
model.add_constraint(
    name = 'input_2_constraint',
    fn = product_1_amt*3+product_2_amt*1 <= 200
)

# Solve the model
model.solve(get_duals=True, get_slacks=True)

# Show the outputs
print(model.outputs)

Outputs:

{'status': 'Optimal', 'objective': 80.0, 'variables': {'product_1': 60.0, 'product_2': 20.0}, 'duals': {'input_1_constraint': 0.4, 'input_2_constraint': 0.2}, 'slacks': {'input_1_constraint': -0.0, 'input_2_constraint': -0.0}}

Array Based Optimization

from scx.optimize import Model

# Create variables
data=[
    {
        'name': 'product_1',
        'input_1': 1,
        'input_2': 3,
        'profit': 1,
        'amt': Model.variable(name="product_1", lowBound=0)
    },
    {
        'name': 'product_2',
        'input_1': 2,
        'input_2': 1,
        'profit': 1,
        'amt': Model.variable(name="product_2", lowBound=0)
    }
]

constraints = [
    {
        'name':'input_1',
        'max_amt':100
    },
    {
        'name':'input_2',
        'max_amt':200
    }
]

# Initialize the model
model = Model(name="Array_Problem", sense='maximize')


# Add the Objective Fn
model.add_objective(
    fn=Model.sum([i['amt']*i['profit'] for i in data])
)

# Add Constraints
for j in constraints:
    model.add_constraint(
        name=f'{j["name"]}_constraint',
        fn=Model.sum([i['amt']*i[j['name']] for i in data]) <= j['max_amt']
    )

# Solve the model
model.solve(get_duals=True, get_slacks=True)

# Show the outputs
print(model.outputs)

Outputs:

{'status': 'Optimal', 'objective': 80.0, 'variables': {'product_1': 60.0, 'product_2': 20.0}, 'duals': {'input_1_constraint': 0.4, 'input_2_constraint': 0.2}, 'slacks': {'input_1_constraint': -0.0, 'input_2_constraint': -0.0}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scx-1.0.2.tar.gz (7.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page