Skip to main content

Async scylla driver for python

Project description

PyPI PyPI - Downloads

Async Scylla driver for python

Python driver for ScyllaDB written in Rust. Though description says it's for scylla, however it can be used with Cassandra and AWS keyspaces as well.

This driver uses official ScyllaDB driver for Rust and exposes python API to interact with it.

Installation

To install it, use your favorite package manager for python packages:

pip install scyllapy

Also, you can build from sources. To do it, install stable rust, maturin and openssl libs.

maturin build --release --out dist
# Then install whl file from dist folder.
pip install dist/*

Usage

The usage is pretty straitforward. Create a Scylla instance, run startup and start executing queries.

import asyncio

from scyllapy import Scylla


async def main():
    scylla = Scylla(["localhost:9042"], keyspace="keyspace")
    await scylla.startup()
    await scylla.execute("SELECT * FROM table")
    await scylla.shutdown()

if __name__ == "__main__":
    asyncio.run(main())

Parametrizing queries

While executing queries sometimes you may want to fine-tune some parameters, or dynamically pass values to the query.

Passing parameters is simple. You need to add a paramters list to the query.

    await scylla.execute(
        "INSERT INTO otps(id, otp) VALUES (?, ?)",
        [uuid.uuid4(), uuid.uuid4().hex],
    )

Queries can be modified further by using Query class. It allows you to define consistency for query or enable tracing.

from scyllapy import Scylla, Query, Consistency, SerialConsistency

async def make_query(scylla: Scylla) -> None:
    query = Query(
        "SELECT * FROM table",
        consistency=Consistency.ALL,
        serial_consistency=SerialConsistency.LOCAL_SERIAL,
        request_timeout=1,
        timestamp=int(time.time()),
        is_idempotent=False,
        tracing=True,
    )
    result = await scylla.execute(query)
    print(result.all())

Also, with queries you can tweak random parameters for a specific execution.

query = Query("SELECT * FROM table")

new_query = query.with_consistency(Consistency.ALL)

All with_ methods create new query, copying all other parameters.

Here's the list of scylla types and corresponding python types that you should use while passing parameters to queries:

Scylla type Python type
int int
tinyint extra_types.TinyInt
bigint extra_types.BigInt
varint any int type
float float
double extra_types.Double
decimal decimal.Decimal
ascii str
text str
varchar str
blob bytes
boolean bool
counter extra_types.Counter
date datetime.date
uuid uuid.UUID
inet ipaddress
time datetime.time
timestamp datetime.datetime
duration dateutil.relativedelta

All types from extra_types module are used to eliminate any possible ambiguity while passing parameters to queries. You can find more information about them in Extra types section.

We use relative delta from dateutil for duration, because it's the only way to represent it in python. Since scylla operates with months, days and nanosecond, there's no way we can represent it in python, becuase months are variable length.

Named parameters

Also, you can provide named parameters to querties, by using name placeholders instead of ?.

For example:

async def insert(scylla: Scylla):
    await scylla.execute(
        "INSERT INTO table(id, name) VALUES (:id, :name)",
        params={"id": uuid.uuid4(), "name": uuid.uuid4().hex}
    )

Important note: All variables should be in snake_case. Otherwise the error may be raised or parameter may not be placed in query correctly. This happens, because scylla makes all parameters in query lowercase.

The scyllapy makes all parameters lowercase, but you may run into problems, if you use multiple parameters that differ only in cases of some letters.

Preparing queries

Also, queries can be prepared. You can either prepare raw strings, or Query objects.

from scyllapy import Scylla, Query, PreparedQuery


async def prepare(scylla: Scylla, query: str | Query) -> PreparedQuery:
    return await scylla.prepare(query)

You can execute prepared queries by passing them to execute method.

async def run_prepared(scylla: Scylla) -> None:
    prepared = await scylla.prepare("INSERT INTO memse(title) VALUES (?)")
    await scylla.execute(prepared, ("American joke",))

Batching

We support batches. Batching can help a lot when you have lots of queries that you want to execute at the same time.

from scyllapy import Scylla, Batch


async def run_batch(scylla: Scylla, num_queries: int) -> None:
    batch = Batch()
    for _ in range(num_queries):
        batch.add_query("SELECT * FROM table WHERE id = ?")
    await scylla.batch(batch, [(i,) for i in range(num_queries)])

Here we pass query as strings. But you can also add Prepared statements or Query objects.

Also, note that we pass list of lists as parametes for execute. Each element of the list is going to be used in the query with the same index. But named parameters are not supported for batches.

async def run_batch(scylla: Scylla, num_queries: int) -> None:
    batch = Batch()
    batch.add_query("SELECT * FROM table WHERE id = :id")
    await scylla.batch(batch, [{"id": 1}])  # Will rase an error!

Pagination

Sometimes you want to query lots of data. For such cases it's better not to fetch all results at once, but fetch them using pagination. It reduces load not only on your application, but also on a cluster.

To execute query with pagination, simply add paged=True in execute method. After doing so, execute method will return IterableQueryResult, instead of QueryResult. Instances of IterableQueryResult can be iterated with async for statements. You, as a client, won't see any information about pages, it's all handeled internally within a driver.

Please note, that paginated queries are slower to fetch all rows, but much more memory efficent for large datasets.

    result = await scylla.execute("SELECT * FROM table", paged=True)
    async for row in result:
        print(row)

Of course, you can change how results returned to you, by either using scalars or as_cls. For example:

async def func(scylla: Scylla) -> None:
    rows = await scylla.execute("SELECT id FROM table", paged=True)
    # Will print ids of each returned row.
    async for test_id in rows.scalars():
        print(test_id)
from dataclasses import dataclass

@dataclass
class MyDTO:
    id: int
    val: int

async def func(scylla: Scylla) -> None:
    rows = await scylla.execute("SELECT * FROM table", paged=True)
    # Will print ids of each returned row.
    async for my_dto in rows.as_cls(MyDTO):
        print(my_dto.id, my_dto.val)

Execution profiles

You can define profiles using ExecutionProfile class. After that the profile can be used while creating a cluster or when defining queries.

from scyllapy import Consistency, ExecutionProfile, Query, Scylla, SerialConsistency
from scyllapy.load_balancing import LoadBalancingPolicy, LatencyAwareness

default_profile = ExecutionProfile(
    consistency=Consistency.LOCAL_QUORUM,
    serial_consistency=SerialConsistency.LOCAL_SERIAL,
    request_timeout=2,
)

async def main():
    query_profile = ExecutionProfile(
        consistency=Consistency.ALL,
        serial_consistency=SerialConsistency.SERIAL,
        # Load balancing cannot be constructed without running event loop.
        # If you won't do it inside async funcion, it will result in error.
        load_balancing_policy=await LoadBalancingPolicy.build(
            token_aware=True,
            prefer_rack="rack1",
            prefer_datacenter="dc1",
            permit_dc_failover=True,
            shuffling_replicas=True,
            latency_awareness=LatencyAwareness(
                minimum_measurements=10,
                retry_period=1000,
                exclusion_threshold=1.4,
                update_rate=1000,
                scale=2,
            ),
        ),
    )

    scylla = Scylla(
        ["192.168.32.4"],
        default_execution_profile=default_profile,
    )
    await scylla.startup()
    await scylla.execute(
        Query(
            "SELECT * FROM system_schema.keyspaces;",
            profile=query_profile,
        )
    )

Results

Every query returns a class that represents returned rows. It allows you to not fetch and parse actual data if you don't need it. Please be aware that if your query was not expecting any rows in return. Like for Update or Insert queries. The RuntimeError is raised when you call all or first.

result = await scylla.execute("SELECT * FROM table")
print(result.all())

If you were executing query with tracing, you can get tracing id from results.

result = await scylla.execute(Query("SELECT * FROM table", tracing=True))
print(result.trace_id)

Also it's possible to parse your data using custom classes. You can use dataclasses or Pydantic.

from dataclasses import dataclass

@dataclass
class MyDTO:
    id: uuid.UUID
    name: str

result = await scylla.execute("SELECT * FROM inbox")
print(result.all(as_class=MyDTO))

Or with pydantic.

from pydantic import BaseModel

class MyDTO(BaseModel):
    user_id: uuid.UUID
    chat_id: uuid.UUID

result = await scylla.execute("SELECT * FROM inbox")
print(result.all(as_class=MyDTO))

Extra types

Since Rust enforces typing, it's hard to identify which value user tries to pass as a parameter. For example, 1 that comes from python can be either tinyint, smallint or even bigint. But we cannot say for sure how many bytes should we send to server. That's why we created some extra_types to eliminate any possible ambigousnity.

You can find these types in extra_types module from scyllapy.

from scyllapy import Scylla, extra_types

async def execute(scylla: Scylla) -> None:
    await scylla.execute(
        "INSERT INTO table(id, name) VALUES (?, ?)",
        [extra_types.BigInt(1), "memelord"],
    )

User defined types

We also support user defined types. You can pass them as a parameter to query. Or parse it as a model in response.

Here's binding example. Imagine we have defined a type in scylla like this:

CREATE TYPE IF NOT EXISTS test (
    id int,
    name text
);

Now we need to define a model for it in python.

from dataclasses import dataclass
from scyllapy.extra_types import ScyllaPyUDT

@dataclass
class TestUDT(ScyllaPyUDT):
    # Always define fields in the same order as in scylla.
    # Otherwise you will get an error, or wrong data.
    id: int
    name: str

async def execute(scylla: Scylla) -> None:
    await scylla.execute(
        "INSERT INTO table(id, udt_col) VALUES (?, ?)",
        [1, TestUDT(id=1, name="test")],
    )

We also support pydantic based models. Decalre them like this:

from pydantic import BaseModel
from scyllapy.extra_types import ScyllaPyUDT


class TestUDT(BaseModel, ScyllaPyUDT):
    # Always define fields in the same order as in scylla.
    # Otherwise you will get an error, or wrong data.
    id: int
    name: str

Query building

ScyllaPy gives you ability to build queries, instead of working with raw cql. The main advantage that it's harder to make syntax error, while creating queries.

Base classes for Query building can be found in scyllapy.query_builder.

Usage example:

from scyllapy import Scylla
from scyllapy.query_builder import Insert, Select, Update, Delete


async def main(scylla: Scylla):
    await scylla.execute("CREATE TABLE users(id INT PRIMARY KEY, name TEXT)")

    user_id = 1

    # We create a user with id and name.
    await Insert("users").set("id", user_id).set(
        "name", "user"
    ).if_not_exists().execute(scylla)

    # We update it's name to be user2
    await Update("users").set("name", "user2").where("id = ?", [user_id]).execute(
        scylla
    )

    # We select all users with id = user_id;
    res = await Select("users").where("id = ?", [user_id]).execute(scylla)
    # Verify that it's correct.
    assert res.first() == {"id": 1, "name": "user2"}

    # We delete our user.
    await Delete("users").where("id = ?", [user_id]).if_exists().execute(scylla)

    res = await Select("users").where("id = ?", [user_id]).execute(scylla)

    # Verify that user is deleted.
    assert not res.all()

    await scylla.execute("DROP TABLE users")

Also, you can pass built queries into InlineBatches. You cannot use queries built with query_builder module with default batches. This constraint is exists, because we need to use values from within your queries and should ignore all parameters passed in batch method of scylla.

Here's batch usage example.

from scyllapy import Scylla, InlineBatch
from scyllapy.query_builder import Insert


async def execute_batch(scylla: Scylla) -> None:
    batch = InlineBatch()
    for i in range(10):
        Insert("users").set("id", i).set("name", "test").add_to_batch(batch)
    await scylla.batch(batch)

Paging

Queries that were built with QueryBuilder also support paged returns. But it supported only for select, because update, delete and insert should not return anything and it makes no sense implementing it. To make built Select query return paginated iterator, add paged parameter in execute method.

    rows = await Select("test").execute(scylla, paged=True)
    async for row in rows:
        print(row['id'])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scyllapy-1.3.2.tar.gz (58.0 kB view details)

Uploaded Source

Built Distributions

scyllapy-1.3.2-cp38-abi3-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8+ Windows x86-64

scyllapy-1.3.2-cp38-abi3-win32.whl (2.2 MB view details)

Uploaded CPython 3.8+ Windows x86

scyllapy-1.3.2-cp38-abi3-musllinux_1_2_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8+ musllinux: musl 1.2+ x86-64

scyllapy-1.3.2-cp38-abi3-musllinux_1_2_i686.whl (3.3 MB view details)

Uploaded CPython 3.8+ musllinux: musl 1.2+ i686

scyllapy-1.3.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

scyllapy-1.3.2-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ppc64le

scyllapy-1.3.2-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ i686

scyllapy-1.3.2-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (2.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARMv7l

scyllapy-1.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

scyllapy-1.3.2-cp38-abi3-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

scyllapy-1.3.2-cp38-abi3-macosx_10_12_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file scyllapy-1.3.2.tar.gz.

File metadata

  • Download URL: scyllapy-1.3.2.tar.gz
  • Upload date:
  • Size: 58.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for scyllapy-1.3.2.tar.gz
Algorithm Hash digest
SHA256 d14da87b50834e1f9779352f4f6d2c41b4c06c50e374a448358cce8a1a5045c8
MD5 8405f88a1a17b6e9b80454db82c5015e
BLAKE2b-256 16c830642849ef2ce9fc2628107c241a23eb0351b30766dc5a8c5bdf5a072b9e

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 28cd1963ddadf57338e84d8d6ef9cd30878e9756c763724ba4746145afac7317
MD5 9490cab22424fd9d8bda9efda075a43e
BLAKE2b-256 55239b588b0fc8702b0bdbb546e598afc4478fc73e2a1c04123415875c2f5f44

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-win32.whl.

File metadata

  • Download URL: scyllapy-1.3.2-cp38-abi3-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.4

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-win32.whl
Algorithm Hash digest
SHA256 f534dc91abde7100d06be4e019dc8a5ab43200769dd955aed067d008c0e52f19
MD5 13d7455d51526e72dec0340394675939
BLAKE2b-256 5b733b3605c1f1a642143479736121f64c44742498f24e9bfdbe207ad67607c3

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3598abda6d0836bdaf4898056959aad4fc0a93bc56ff3752372ba16b7241621d
MD5 c842deddee44569f48ff1e676cd883eb
BLAKE2b-256 fa3da0720bd9750a52d99c15a3dd90d1c7ea3354c7d580a8b5662298ab7cd713

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 222ac9c346816f96baa5812ed3f3cc5920e48599c3bf22fa070605df4298d316
MD5 8ab7772377a61490b94a1c7951ba5523
BLAKE2b-256 dc7d483610f383290c8a51ebd03ba6c1f2d9f7da7e0e615fb9e0e38722156950

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 648a3db8c6e8855acd61463e170fa1aba768a8d76ac37f0a942e58762218802d
MD5 8af5823e5524a4ef0058f9b532dfa072
BLAKE2b-256 bad41b7a2a2a62e1329ef3f33c604d83b8818f12653eb8fb9883e4a27f86d70e

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 664e0d1c44d3b7abda706267af59e04f808e914967a583454a2e609d487c2031
MD5 e9911d04d809826d8707dc692ec2c426
BLAKE2b-256 157a5dbccc6f258266bb5273848f19282c6f1336fbec9380659e3841fda080f3

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 284a5ac93d173f4013f3a4696eec5b290efff7407b4ccae23ee4f523fd597618
MD5 2eeb8254ff38db4e94baa4009dcc30d0
BLAKE2b-256 fd40365e024db973c1feb80f301606e34c28ac035d3db8aef54e4a49b036baa8

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 dd79a19966f6fa3490c1f5f09aac98c95b38ceab78b1f5c84a3bd4e258a7b96d
MD5 dd8318ef22ec4a1223617ee438744e3b
BLAKE2b-256 324cca2bbfc789d5fbe7b33de356d8cd1c5da0ded4ec1730c4a073a0639b9efe

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a6be6cefe506602ece92959298c56b2c57d28b35d76c49251ec2e4ad370c1f0c
MD5 f388ea70543e3ee5ee9ed3dc37ff4b0e
BLAKE2b-256 fd61010b541b5ecc233a7dd4d5241f9a71216250ee191e26efba093290579dbd

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cb0439549b4b6fc254b24c44e4c0fe2b3d70e55248d130cdf55e8a85fbb94f6
MD5 ee419b4bedc63fd108eb8b36090bbd7e
BLAKE2b-256 9af877e58078445160adcc0d67fc38ce652bced2938e1d02c4b8d6c3fb53ca03

See more details on using hashes here.

File details

Details for the file scyllapy-1.3.2-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for scyllapy-1.3.2-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2f63f7d8046ccaadd4a544d11289ff3c72802d49fb028f5a851ffe54ba682302
MD5 9bd2f14044a6c77ce36c161ae36ba8ac
BLAKE2b-256 c95eb4cd8f11508dc0335ecc3ca5645fb8e5b12e34cebb15640c2e6d3b58f963

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page