Skip to main content

Sliced Detection and Clustering Analysis Toolkit - Developed by MBARI

Project description

MBARI semantic-release License Python

sdcat

Sliced Detection and Clustering Analysis Toolkit

This repository processes images using a sliced detection and clustering workflow. If your images look something like the image below, and you want to detect objects in the images, and optionally cluster the detections, then this repository may be useful to you. The repository is designed to be run from the command line, and can be run in a Docker container, with or without a GPU (recommended).


Detection

Detection can be done with a fine-grained saliency-based detection model, and/or one the following models run with the SAHI algorithm. Both detections algorithms are run by default and combined to produce the final detections.

Model Description
yolov8s YOLOv8s model from Ultralytics
hustvl/yolos-small YOLOS model a Vision Transformer (ViT)
hustvl/yolos-tiny YOLOS model a Vision Transformer (ViT)
MBARI/megamidwater (default) MBARI midwater YOLOv5x for general detection in midwater images
MBARI/uav-yolov5 MBARI UAV YOLOv5x for general detection in UAV images
FathomNet/MBARI-315k-yolov5 MBARI YOLOv5x for general detection in benthic images

To skip saliency detection, use the --skip-saliency option.

sdcat detect --skip-saliency --image-dir <image-dir> --save-dir <save-dir> --model <model> --slice-size-width 900 --slice-size-height 900

To skip using the SAHI algorithm, use --skip-sahi.

sdcat detect --skip-sahi --image-dir <image-dir> --save-dir <save-dir> --model <model> --slice-size-width 900 --slice-size-height 900

ViTS + HDBSCAN Clustering

Once the detections are generated, the detections can be clustered. Alternatively, detections can be clustered from a collection of images by providing the detections in a folder with the roi option.

sdcat cluster roi --roi <roi> --save-dir <save-dir> --model <model> 

The clustering is done with a Vision Transformer (ViT) model, and a cosine similarity metric with the HDBSCAN algorithm. The ViT model is used to generate embeddings for the detections, and the HDBSCAN algorithm is used to cluster the detections. The defaults are set to produce fine-grained clusters, but the parameters can be adjusted to produce coarser clusters. The algorithm workflow looks like this:

Installation

Pip install the sdcat package with:

pip install sdcat

Alternatively, Docker can be used to run the code. A pre-built docker image is available at Docker Hub with the latest version of the code.

Detection

docker run -it -v $(pwd):/data mbari/sdcat detect --image-dir /data/images --save-dir /data/detections --model MBARI-org/uav-yolov5

Followed by clustering

docker run -it -v $(pwd):/data mbari/sdcat cluster detections --det-dir /data/detections/ --save-dir /data/detections --model MBARI-org/uav-yolov5

A GPU is recommended for clustering and detection. If you don't have a GPU, you can still run the code, but it will be slower. If running on a CPU, multiple cores are recommended and will speed up processing.

docker run -it --gpus all -v $(pwd):/data mbari/sdcat:cuda124 detect --image-dir /data/images --save-dir /data/detections --model MBARI-org/uav-yolov5

Commands

To get all options available, use the --help option. For example:

sdcat --help

which will print out the following:

Usage: sdcat [OPTIONS] COMMAND [ARGS]...

  Process images from a command line.

Options:
  -V, --version  Show the version and exit.
  -h, --help     Show this message and exit.

Commands:
  cluster  Cluster detections.
  detect   Detect objects in images

To get details on a particular command, use the --help option with the command. For example, with the cluster command:

 sdcat  cluster --help 

which will print out the following:

Usage: sdcat cluster [OPTIONS] COMMAND [ARGS]...

  Commands related to clustering images

Options:
  -h, --help  Show this message and exit.

Commands:
  detections  Cluster detections.
  roi         Cluster roi.

File organization

The sdcat toolkit generates data in the following folders. Here, we assume both detection and clustering is output to the same root folder.:

/data/20230504-MBARI/
└── detections
    └── hustvl
        └── yolos-small                         # The model used to generate the detections
            ├── det_raw                         # The raw detections from the model
            │   └── csv                    
            │       ├── DSC01833.csv
            │       ├── DSC01859.csv
            │       ├── DSC01861.csv
            │       └── DSC01922.csv
            ├── det_filtered                    # The filtered detections from the model
            ├── det_filtered_clustered          # Clustered detections from the model
                ├── crops                       # Crops of the detections 
                ├── dino_vits8...date           # The clustering results - one folder per each run of the clustering algorithm
                ├── dino_vits8..exemplars.csv   # Exemplar embeddings - examples with the highest cosine similarity within a cluster
                ├── dino_vits8..detections.csv  # The detections with the cluster id
            ├── stats.txt                       # Statistics of the detections
            └── vizresults                      # Visualizations of the detections (boxes overlaid on images)
                ├── DSC01833.jpg
                ├── DSC01859.jpg
                ├── DSC01861.jpg
                └── DSC01922.jpg

Process images creating bounding box detections with the YOLOv5 model.

The YOLOv5s model is not as accurate as other models, but is fast and good for detecting larger objects in images, and good for experiments and quick results. Slice size is the size of the detection window. The default is to allow the SAHI algorithm to determine the slice size; a smaller slice size will take longer to process.

sdcat detect --image-dir <image-dir> --save-dir <save-dir> --model yolov5s --slice-size-width 900 --slice-size-height 900

Cluster detections from the YOLOv5 model

Cluster the detections from the YOLOv5 model. The detections are clustered using cosine similarity and embedding features from a FaceBook Vision Transformer (ViT) model.

sdcat cluster --det-dir <det-dir> --save-dir <save-dir> --model yolov5s

Related work

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sdcat-1.9.2.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

sdcat-1.9.2-py3-none-any.whl (41.6 kB view details)

Uploaded Python 3

File details

Details for the file sdcat-1.9.2.tar.gz.

File metadata

  • Download URL: sdcat-1.9.2.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure

File hashes

Hashes for sdcat-1.9.2.tar.gz
Algorithm Hash digest
SHA256 57129f779bbb646f4266d4bc526f50ac3ac9320ba607a458fd34c7a87db0138e
MD5 6b50b2c23f477854b32d3e7e13509216
BLAKE2b-256 61fd0acf6e5db14e1230ea1ed1e5038396074151730b744eecf8bdc1cebedef8

See more details on using hashes here.

File details

Details for the file sdcat-1.9.2-py3-none-any.whl.

File metadata

  • Download URL: sdcat-1.9.2-py3-none-any.whl
  • Upload date:
  • Size: 41.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure

File hashes

Hashes for sdcat-1.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5e05b6a19d200c761f86497f667620808caecc88bd961af134931fa206d688e1
MD5 b1c0c5af730049d1c3ff1f01cbc29379
BLAKE2b-256 9a4759072f0e60d0c173a44b22b4c1805d3dfadfcca84f5fd79877fc57fb3052

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page