Skip to main content

Scale Dependent Correlation in Python

Project description

sdcpy

Scale Dependent Correlation (SDC) analysis1, 2, 3 in Python.

Features

Installation

You can install sdcpy via pip from PyPI:

pip install sdcpy

References

  1. Rodó, X. (2001). Reversal of three global atmospheric fields linking changes in SST anomalies in the Pacific, Atlantic and Indian oceans at tropical latitudes and midlatitudes. Climate Dynamics, 18:203-217. DOI: 10.1007/s003820100171.

  2. Rodríguez, M.A. & Rodó, X. (2004). A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis. Oecologia, 138,485-504. DOI: 10.1007/s00442-003-1464-4.

  3. Rodó, X. & M.A. Rodriguez-Arias. (2006). A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis. Climate Dynamics, 27:441-458. DOI: 10.1007/s00382-005-0106-4.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sdcpy-0.3.0.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

sdcpy-0.3.0-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file sdcpy-0.3.0.tar.gz.

File metadata

  • Download URL: sdcpy-0.3.0.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.0 Linux/5.15.0-1039-azure

File hashes

Hashes for sdcpy-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e76f6b01164e4fdc16aa4c7c1b93e229ba0c8c26fc330b503f51555cc3ce3114
MD5 346cc6be62b4992962c90735e0eaf447
BLAKE2b-256 95eafcddb579f3b2e7cfdfec5bb51904ef5497abdd3d27551491c01efdc965db

See more details on using hashes here.

File details

Details for the file sdcpy-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: sdcpy-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.0 Linux/5.15.0-1039-azure

File hashes

Hashes for sdcpy-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 119581900500e66bcd7a94c38a3ea8f8ecca4dd99a6e73d4eb7694a516a5837d
MD5 032005eceb639cc36b2755c29867afb8
BLAKE2b-256 7d868cbb5a0e2c25cef87ef9596b00305431c6d6525a8c7ef9825f16c5a928aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page