Simple doc_string eraser for ONNX.
Project description
sde4onnx
Simple Doc_string Eraser for ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
Key concept
- doc_string eraser for ONNX. e.g. Hagging Face Stable Diffusion ONNX.
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sde4onnx
1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
2. CLI Usage
$ sde4onnx -h
usage:
sde4onnx [-h]
-if INPUT_ONNX_FILE_PATH
[-of OUTPUT_ONNX_FILE_PATH]
[-n]
optional arguments:
-h, --help
show this help message and exit.
-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output onnx file path.
-n, --non_verbose
Do not show all information logs. Only error logs are displayed.
3. In-script Usage
>>> from sde4onnx import erase
>>> help(erase)
Help on function erase in module sde4onnx.onnx_opname_generator:
erase(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = '',
non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
renamed_graph: onnx.ModelProto
Renamed onnx ModelProto.
4. CLI Execution
$ sde4onnx \
--input_onnx_file_path vae_encoder.onnx \
--output_onnx_file_path vae_encoder_erased.onnx
5. In-script Execution
from sde4onnx import erase
onnx_graph = erase(
input_onnx_file_path="vae_encoder.onnx",
output_onnx_file_path="vae_encoder_erased.onnx",
)
6. Sample
https://huggingface.co/bes-dev/stable-diffusion-v1-4-onnx/resolve/main/vae_encoder.onnx
Before
After
7. Reference
- https://github.com/onnx/onnx/blob/main/docs/Operators.md
- https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
- https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
- https://github.com/PINTO0309/simple-onnx-processing-tools
- https://github.com/PINTO0309/PINTO_model_zoo
8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sde4onnx-1.0.0.tar.gz
(4.6 kB
view details)
Built Distribution
File details
Details for the file sde4onnx-1.0.0.tar.gz
.
File metadata
- Download URL: sde4onnx-1.0.0.tar.gz
- Upload date:
- Size: 4.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69dc46c0f6cd3ec9d4fc14af6aabe4b990a90b789b5178e83383094960104221 |
|
MD5 | 09490927bfe3e21094c082ad45241f96 |
|
BLAKE2b-256 | 26dcf50ea7e17d4c22ea0733b7ba1839593d09534b4393f400812ae4c0430814 |
File details
Details for the file sde4onnx-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: sde4onnx-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f77595bb7f97eaa72bf3068cea3e317d6affd140431021e6c380b9501a750ed2 |
|
MD5 | 6c078e25946501ebea5b7843d97778be |
|
BLAKE2b-256 | 44a29ecae8aa06a3585fff9b232dcc8494ab37e95979f97959e2c98800869923 |