Skip to main content

Simple doc_string eraser for ONNX.

Project description

sde4onnx

Simple Doc_string Eraser for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • doc_string eraser for ONNX. e.g. Hagging Face Stable Diffusion ONNX.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sde4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sde4onnx -h

usage:
  sde4onnx [-h]
  -if INPUT_ONNX_FILE_PATH
  [-of OUTPUT_ONNX_FILE_PATH]
  [-n]

optional arguments:
  -h, --help
      show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  -n, --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sde4onnx import erase
>>> help(erase)

Help on function erase in module sde4onnx.onnx_opname_generator:

erase(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    renamed_graph: onnx.ModelProto
        Renamed onnx ModelProto.

4. CLI Execution

$ sde4onnx \
--input_onnx_file_path vae_encoder.onnx \
--output_onnx_file_path vae_encoder_erased.onnx

5. In-script Execution

from sde4onnx import erase

onnx_graph = erase(
  input_onnx_file_path="vae_encoder.onnx",
  output_onnx_file_path="vae_encoder_erased.onnx",
)

6. Sample

https://huggingface.co/bes-dev/stable-diffusion-v1-4-onnx/resolve/main/vae_encoder.onnx

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sde4onnx-1.0.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

sde4onnx-1.0.0-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file sde4onnx-1.0.0.tar.gz.

File metadata

  • Download URL: sde4onnx-1.0.0.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for sde4onnx-1.0.0.tar.gz
Algorithm Hash digest
SHA256 69dc46c0f6cd3ec9d4fc14af6aabe4b990a90b789b5178e83383094960104221
MD5 09490927bfe3e21094c082ad45241f96
BLAKE2b-256 26dcf50ea7e17d4c22ea0733b7ba1839593d09534b4393f400812ae4c0430814

See more details on using hashes here.

File details

Details for the file sde4onnx-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: sde4onnx-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for sde4onnx-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f77595bb7f97eaa72bf3068cea3e317d6affd140431021e6c380b9501a750ed2
MD5 6c078e25946501ebea5b7843d97778be
BLAKE2b-256 44a29ecae8aa06a3585fff9b232dcc8494ab37e95979f97959e2c98800869923

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page