Synthetic Data Generation and Evaluation
Project description
About
-
SDGnE (Synthetic Data Generation and Evaluation) is a Python package designed to generate synthetic data and evaluate its quality using neural network models.
-
This tool is intended for developers and researchers who require synthetic datasets for testing and development.
-
The current dittto version
v1.0.0
uses Autoencoders and SMOTE to generate synthetic data.
Getting Started
pip install sdgne
Notebooks
To get started, we have created notebook for the Autoencoder and SMOTE algorithm.
Auto Encoder
Autoencoders are a class of neural networks designed for unsupervised learning and representing features in a smaller space. They consist of an encoder and a decoder, intending to learn the input data's compressed representation (encoding). We leverage this architecture to generate synthetic data.
SMOTE
SMOTE, abbreviated as Synthetic Minority Oversampling Technique, is used to generate synthetic data from the original dataset. Over the years, several variants of SMOTE have been developed, each tailored to specific scenarios and requirements. These variants employ distinct methodologies and innovations to enhance the generation of synthetic data, thereby improving model performance by ensuring a more balanced distribution of classes. We provide a few SMOTE variants for synthetic data generation.
Comparison
In this notebook, we will compare the Single Encoder Autoencoder
and the SMOTE Algorithm
for synthetic data generation. We will generate synthetic data using both the algorithms and perform statistical evaluation.
Features
-
Data Generation: Create synthetic datasets that mimic the statistical properties of real-world data.
-
Neural Autoencoders: Utilize various autoencoder architectures to learn data representations.
-
Evaluation Metrics: Assess the quality of synthetic data using built-in evaluation metrics.
-
Extensibility: Easily extend the package with custom data generators and evaluators.
Links
- Documentation: https://seattle-university.gitbook.io/sdgne/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sdgne-4.0.0.tar.gz
.
File metadata
- Download URL: sdgne-4.0.0.tar.gz
- Upload date:
- Size: 286.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c771e7bc81612fa95a783da759a63f30ea44c9a6e88c705f0fdcf2301cd7bcc1 |
|
MD5 | 37827acde501aea8dd44b2693f5ac18e |
|
BLAKE2b-256 | 5c7caba637683b0930f8aa927168f811de462dbee33d184a981d6092595e4818 |
File details
Details for the file sdgne-4.0.0-py3-none-any.whl
.
File metadata
- Download URL: sdgne-4.0.0-py3-none-any.whl
- Upload date:
- Size: 293.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b83ee659a5da787d08e26417a9218f3aacb994d2017e714228f733a25419b4a |
|
MD5 | db7143ca305a311fe27c0e730c2fe36a |
|
BLAKE2b-256 | 78edc1781b8cc46046186716f0d6e79364b258ea848d1ca9112c2a0a096ef7d2 |