Skip to main content

Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ), A text-to-image generative AI model that creates beautiful 1024x1024 images.

Project description

Stable Diffusion XL ( API )

Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ) via https://replicate.com/ , A text-to-image generative AI model that creates beautiful 1024x1024 images.

Table of Contents

Prerequisites

To use this API, you need to have the following:

Python installed on your system requests library installed

  pip install requests

Installation

To use the Claude AI Unofficial API, you can either clone the GitHub repository or directly download the Python file.

Terminal :

pip install sdxl

or

Clone the repository:

git clone https://github.com/KoushikNavuluri/stable-diffusion-xl-api.git

Usage

Import the claude_api module in your Python script:

from sdxl import ImageGenerator
  • Next, you need to create an instance of the ImageGenerator class:
client = ImageGenerator()

Send Prompt to generate image

images = sdxl.gen_image(
    "Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.")
print(images)

Output

Example Images Generated

Advanced Generation using parameters

#Parameters set to their default values
images = sdxl.gen_image(prompt=
    "Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.",count=1, width=1024, height=1024, refine="expert_ensemble_refiner", scheduler="DDIM", guidance_scale=7.5, high_noise_frac=0.8, prompt_strength=0.8, num_inference_steps=50)
print(images)

List of parameters

  *   prompt = Input text prompt
  *   width  = Width of output image(max:1024)
  *   height = height of output image(max:1024)
  *   count  = Number of images to output. (minimum: 1; maximum: 4) 
  *   refine = Which refine style to use ( no_refiner or expert_ensemble_refiner or base_image_refiner )
  *   scheduler = scheduler (valid_schedulers = ["DDIM" or "DPMSolverMultistep" or "HeunDiscrete" or "KarrasDPM" or "K_EULER_ANCESTRAL" or "K_EULER" or "PNDM"])
  *   guidance_scale = Scale for classifier-free guidance (minimum: 1; maximum: 50) 
  *   prompt_strength = Prompt strength in image (maximum: 1) 
  *   num_inference_steps = Number of denoising steps (minimum: 1; maximum: 500) 
  *   high_noise_frac = for expert_ensemble_refiner, the fraction of noise to use (maximum: 1)

CLI Version

For cli version you can check example folder in this repository (filename:cli.py)

How to:

python main.py "beautiful landscape with two kittens,realistic,4k" --count 1 --width 1024 --height 1024 --refine expert_ensemble_refiner --scheduler DDIM --guidance_scale 7.5 --high_noise_frac 0.6 --prompt_strength 0.9 --num_inference_steps 40

Disclaimer

This project provides an unofficial API for Replicate's Stable Diffusion XL and is not affiliated with or endorsed by Replicate or Stable Diffusion. Use it at your own risk.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sdxl-1.0.0.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

sdxl-1.0.0-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file sdxl-1.0.0.tar.gz.

File metadata

  • Download URL: sdxl-1.0.0.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for sdxl-1.0.0.tar.gz
Algorithm Hash digest
SHA256 389be1a73ce368f8e3c402900b543223130cf485338e8e1977ab99d760cd5e79
MD5 650e466cd9de04dcfcdf151904951f5d
BLAKE2b-256 a072e8e46f1c2de0df7958f5ab37c519e7370b30b5751cc8b70a942bed0653b7

See more details on using hashes here.

File details

Details for the file sdxl-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: sdxl-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for sdxl-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e6086719567126c1ac3bba6e3f07d7bedfc1d602c758b0b5960c6a786d53e4b
MD5 905009bb72a7b44aa4b6ecd769e29eb6
BLAKE2b-256 809750be0d2ea23991dea595f4c33031a1f14fe94975a434b1b69177ac3e2654

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page