Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ), A text-to-image generative AI model that creates beautiful 1024x1024 images.
Project description
Stable Diffusion XL ( API )
Reverse engineered API of Stable Diffusion XL 1.0 ( Midjourney Alternative ) via https://replicate.com/ , A text-to-image generative AI model that creates beautiful 1024x1024 images.
Table of Contents
Prerequisites
To use this API, you need to have the following:
Python installed on your system requests library installed
pip install requests
Installation
To use the Claude AI Unofficial API, you can either clone the GitHub repository or directly download the Python file.
Terminal :
pip install sdxl
or
Clone the repository:
git clone https://github.com/KoushikNavuluri/stable-diffusion-xl-api.git
Usage
Import the claude_api module in your Python script:
from sdxl import ImageGenerator
- Next, you need to create an instance of the ImageGenerator class:
client = ImageGenerator()
Send Prompt to generate image
images = sdxl.gen_image(
"Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.")
print(images)
Output
Example Images Generated
Advanced Generation using parameters
#Parameters set to their default values
images = sdxl.gen_image(prompt=
"Vibrant, Headshot of a serene, meditating individual surrounded by soft, ambient lighting.",count=1, width=1024, height=1024, refine="expert_ensemble_refiner", scheduler="DDIM", guidance_scale=7.5, high_noise_frac=0.8, prompt_strength=0.8, num_inference_steps=50)
print(images)
List of parameters
* prompt = Input text prompt
* width = Width of output image(max:1024)
* height = height of output image(max:1024)
* count = Number of images to output. (minimum: 1; maximum: 4)
* refine = Which refine style to use ( no_refiner or expert_ensemble_refiner or base_image_refiner )
* scheduler = scheduler (valid_schedulers = ["DDIM" or "DPMSolverMultistep" or "HeunDiscrete" or "KarrasDPM" or "K_EULER_ANCESTRAL" or "K_EULER" or "PNDM"])
* guidance_scale = Scale for classifier-free guidance (minimum: 1; maximum: 50)
* prompt_strength = Prompt strength in image (maximum: 1)
* num_inference_steps = Number of denoising steps (minimum: 1; maximum: 500)
* high_noise_frac = for expert_ensemble_refiner, the fraction of noise to use (maximum: 1)
CLI Version
For cli version you can check example folder in this repository (filename:cli.py)
How to:
python main.py "beautiful landscape with two kittens,realistic,4k" --count 1 --width 1024 --height 1024 --refine expert_ensemble_refiner --scheduler DDIM --guidance_scale 7.5 --high_noise_frac 0.6 --prompt_strength 0.9 --num_inference_steps 40
Disclaimer
This project provides an unofficial API for Replicate's Stable Diffusion XL and is not affiliated with or endorsed by Replicate or Stable Diffusion. Use it at your own risk.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sdxl-1.0.0.tar.gz
.
File metadata
- Download URL: sdxl-1.0.0.tar.gz
- Upload date:
- Size: 5.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 389be1a73ce368f8e3c402900b543223130cf485338e8e1977ab99d760cd5e79 |
|
MD5 | 650e466cd9de04dcfcdf151904951f5d |
|
BLAKE2b-256 | a072e8e46f1c2de0df7958f5ab37c519e7370b30b5751cc8b70a942bed0653b7 |
File details
Details for the file sdxl-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: sdxl-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e6086719567126c1ac3bba6e3f07d7bedfc1d602c758b0b5960c6a786d53e4b |
|
MD5 | 905009bb72a7b44aa4b6ecd769e29eb6 |
|
BLAKE2b-256 | 809750be0d2ea23991dea595f4c33031a1f14fe94975a434b1b69177ac3e2654 |