Homogenous transforms in special euclidian 3-space.

## Project description

Special euclidian 3-space is the world in which we live, dealing with 3D
position and orientation (so technically more than 3 dimensions, but
thats why its *special*).

The SE3 class allows us to do typical transformations easily with multiplication of the classes, as well as visualize the coordinate frame and information about it. At the heard of this class are 3D Homogenous transforms. Here’s how they work.

## 3D Rotation Matrices

\(R_x\) is known as roll, \(R_y\) is pich, and \(R_z\) is yaw.

Given yaw, pitch, and roll angles, \(\alpha\), \(\beta\), and \(\gamma\), we can combine them to get the roll-pitch-yaw rotation matrix:

## 3D Homogenous Transforms

Homogenous transforms combine rotation \(R\) with position \(t\) like so:

Thus, when combining transformations with multiplication, we get a translation from the previous orientation followed by a rotation:

## Project details

## Release history Release notifications | RSS feed

## Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.