Skip to main content

Dataframe-like wrapper for SeaTable API.

Project description

sea-serpent

A dataframe-like wrapper around the SeaTable API.

This library tries to make interacting with SeaTables as if you were working with a local pandas DataFrame.

Some notes:

  • This library is at an early stage and the interface might still change somewhat.
  • For convenience and ease of access we're using names to identify tables, columns and bases. Hence you should avoid duplicate names if at all possible.

Install

From PyPI:

pip3 install sea-serpent

Bleeding edge from Github:

pip3 install git+git://github.com/schlegelp/sea-serpent@main

Examples

Getting your API (auth) token

>>> import seaserpent as ss
>>> ss.get_auth_token(username='USER',
...                   password='PASSWORD',
...                   server='https://cloud.seatable.io')
{'token': 'somelongassstring1234567@£$^@£$^£'}

For future use set your default server and auth token as SEATABLE_SERVER and SEATABLE_TOKEN environment variable, respectively.

Initializing a table

Table works as connection to a single SeaTable table. If its name is unique, you can initialize the connection with just the name:

>>> import seaserpent as ss
>>> # Initialize the table
>>> # (if there are multiple tables with this name you need to provide more details)
>>> table = ss.Table(table='MyTable')
>>> table
SeaTable <"MyTable", 10 rows, 2 columns>
>>> # Inspect the first couple rows
>>> table.head()
    column1     labels
0         1          A
1         2          B
2         3          C

Fetching data

The Table itself doesn't download any of the data. Reading the data works via an interface similar to pandas.DataFrames:

>>> # Fetching a column returns a promise
>>> c = table['column1']  # this works too: c = table.column1
>>> c
Column <column="column1", table="LH_bodies", datatype=number>
>>> # To get the values
>>> c.values
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # Filters are automatically translated into SQL query
>>> table.loc[table.column1 >= 7]
    column1     labels
0         7          H
1         8          I
2         9          J
>>> table.loc[table.labels.isin(['D', 'E']) ]
    column1     labels
0         4          D
1         5          E
>>> # Download the whole table as pandas DataFrame
>>> df = table.to_frame()

Adding a column

>>> # First we need to re-initialize the table with write access
>>> table = ss.Table(table='MyTable', read_only=False)
>>> table.add_column(col_name='checked', col_type=bool)
>>> # The column will be empty
>>> table.head()
    column1     labels   checked
0         1          A      None
1         2          B      None
2         3          C      None

Pushing data to table

>>> # Overwrite the whole column
>>> table['checked'] = False
>>> table.head()
    column1     labels   checked
0         1          A     False
1         2          B     False
2         3          C     False
>>> # Alternatively pass a list of values
>>> table['checked'] = [False, True, False]
>>> table.head()
    column1     labels   checked
0         1          A     False
1         2          B      True
2         3          C     False
>>> # Write to a subset of the column
>>> table.loc[:2, 'checked'] = False
>>> table.loc[table.labels == 'C', 'checked'] = True
>>> table.head()
    column1     labels   checked
0         1          A     False
1         2          B     False
2         3          C      True
>>> # To write only changed values to the table
>>> # (more economic, better for logs)
>>> values = table.checked.values 
>>> values[0:2] = True  # Change only two values
>>> table.checked.update(values)

Deleting a column

>>> table['checked'].delete()
>>> table.head()
    column1     labels
0         1          A
1         2          B
2         3          C

Creating a new table

Empty table:

>>> table = ss.Table.new(table_name='MyNewTable', base='MyBase')

From pandas DataFrame:

>>> table = ss.Table.from_frame(df, table_name='MyNewTable', base='MyBase')

Linking tables

Create links:

>>> table.link(other_table='OtherTable',    # name of the other table (must be same base)
...            link_on='Column1',           # column in this table to link on
...            link_on_other='ColumnA',     # column in other table to link on
...            link_col='OtherTableLinks')  # name of column to store links in

Create column that pulls data from linked table:

>>> table.add_linked_column(col_name='LinkedData',      # name of new column
...                         link_col='OtherTableLinks', # column with link(s) to other table
...                         link_on='some_value',       # which column in other table to link to
...                         formula='lookup')           # how to aggregate data (lookup, mean, max, etc)

Known limitations & oddities

  1. 64 bit integers are truncated when writing to a table. I suspect this happens on the server side when decoding the JSON payload because manually entering large numbers through the web interface works perfectly well. Hence, seaserpent safely (and quietly) downcasts 64 bit integers to 32 bit or failing that converts them to floats before uploading.
  2. The web interface appears to only show floats up to the 8th decimal. In the database the precision must be higher though because I have successfully written 1e-128 floats.
  3. Infinite values (i.e. np.inf) raise an error when trying to write.
  4. Cells manually cleared through the UI return empty strings (''). By default, sea-serpent will convert these to None where possible.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sea-serpent-0.1.1.tar.gz (30.8 kB view details)

Uploaded Source

Built Distribution

sea_serpent-0.1.1-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file sea-serpent-0.1.1.tar.gz.

File metadata

  • Download URL: sea-serpent-0.1.1.tar.gz
  • Upload date:
  • Size: 30.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for sea-serpent-0.1.1.tar.gz
Algorithm Hash digest
SHA256 029888e4f1628eab3fbf440a1f0c696bc005d9099f94e333fd104e382df0145b
MD5 a616d49f06cd82d651fb5599f2453772
BLAKE2b-256 11b273e86a4af263124ef70c327e4b19f15bc827b063f0806bb57d3ec4519963

See more details on using hashes here.

File details

Details for the file sea_serpent-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: sea_serpent-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for sea_serpent-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e370418a84faa1138f167b6ca35ce56834d05708438dbba9047bcf94a72f668f
MD5 4d28a8582ab635507419a7326cf9fa5b
BLAKE2b-256 b381a5547daae015bd3008ab928d0b7492716c136ae93cb62e49705acdb2055b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page