Dataframe-like wrapper for SeaTable API.
Project description
sea-serpent
A dataframe-like wrapper around the SeaTable API.
This library tries to make interacting with SeaTables as if you were working with a local pandas DataFrame.
Some notes:
- This library is at an early stage and the interface might still change somewhat.
- For convenience and ease of access we're using names to identify tables, columns and bases. Hence you should avoid duplicate names if at all possible.
Install
From PyPI:
pip3 install sea-serpent
Bleeding edge from Github:
pip3 install git+https://github.com/schlegelp/sea-serpent@main
Examples
Getting your API (auth) token
>>> import seaserpent as ss
>>> ss.get_auth_token(username='USER',
... password='PASSWORD',
... server='https://cloud.seatable.io')
{'token': 'somelongassstring1234567@£$^@£$^£'}
For future use, set your default server and auth token as SEATABLE_SERVER
and
SEATABLE_TOKEN
environment variable, respectively.
Initializing a table
Table
works as connection to a single SeaTable table. If its name is unique,
you can initialize the connection with just the name:
>>> import seaserpent as ss
>>> # Initialize the table
>>> # (if there are multiple tables with this name you need to provide the base too)
>>> table = ss.Table(table='MyTable')
>>> table
SeaTable <"MyTable", 10 rows, 2 columns>
>>> # Inspect the first couple rows
>>> table.head()
column1 labels
0 1 A
1 2 B
2 3 C
Fetching data
The Table
itself doesn't download any of the data. Reading the data works
via an interface similar to pandas.DataFrames
:
>>> # Fetching a column returns a promise
>>> c = table['column1'] # this works too: c = table.column1
>>> c
Column <column="column1", table="LH_bodies", datatype=number>
>>> # To get the values
>>> c.values
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # Filters are automatically translated into SQL query
>>> table.loc[table.column1 >= 7]
column1 labels
0 7 H
1 8 I
2 9 J
>>> table.loc[table.labels.isin(['D', 'E']) ]
column1 labels
0 4 D
1 5 E
>>> # Download the whole table as pandas DataFrame
>>> df = table.to_frame()
Adding a column
>>> # First we need to re-initialize the table with write access
>>> table = ss.Table(table='MyTable', read_only=False)
>>> table.add_column(col_name='checked', col_type=bool)
>>> # The column will be empty
>>> table.head()
column1 labels checked
0 1 A None
1 2 B None
2 3 C None
Pushing data to table
>>> # Overwrite the whole column
>>> table['checked'] = False
>>> table.head()
column1 labels checked
0 1 A False
1 2 B False
2 3 C False
>>> # Alternatively pass a list of values
>>> table['checked'] = [False, True, False]
>>> table.head()
column1 labels checked
0 1 A False
1 2 B True
2 3 C False
>>> # Write to a subset of the column
>>> table.loc[:2, 'checked'] = False
>>> table.loc[table.labels == 'C', 'checked'] = True
>>> table.head()
column1 labels checked
0 1 A False
1 2 B False
2 3 C True
>>> # To write only changed values to the table
>>> # (faster & better for logs)
>>> values = table.checked.values
>>> values[0:2] = True # Change only two values
>>> table.checked.update(values)
Deleting a column
>>> table['checked'].delete()
>>> table.head()
column1 labels
0 1 A
1 2 B
2 3 C
>>> # Alternatively you can also clear an entire column
>>> table.checked.clear()
>>> table.head()
column1 labels checked
0 1 A None
1 2 B None
2 3 C None
Creating a new table
Empty table:
>>> table = ss.Table.new(table_name='MyNewTable', base='MyBase')
From pandas DataFrame:
>>> table = ss.Table.from_frame(df, table_name='MyNewTable', base='MyBase')
Linking tables
Create links:
>>> table.link(other_table='OtherTable', # name of the other table (must be same base)
... link_on='Column1', # column in this table to link on
... link_on_other='ColumnA', # column in other table to link on
... link_col='OtherTableLinks') # name of column to store links in
Create column that pulls data from linked table:
>>> table.add_linked_column(col_name='LinkedData', # name of new column
... link_col='OtherTableLinks', # column with link(s) to other table
... link_on='some_value', # which column in other table to link to
... formula='lookup') # how to aggregate data (lookup, mean, max, etc)
Known limitations & oddities
- 64 bit integers/floats are truncated when writing to a table. I suspect this
happens on the server side when decoding the JSON payload because manually
entering large numbers through the web interface works perfectly well
(copy-pasting still fails though). Hence,
seaserpent
quietly downcasts 64 bit to 32 bit if possible and failing that converts to strings before uploading. - The web interface appears to only show floats up to the 8th decimal. In the database the precision must be higher though because I have successfully written 1e-128 floats.
- Infinite values (i.e.
np.inf
) raise an error when trying to write. - Cells manually cleared through the UI return empty strings (
''
). By default,sea-serpent
will convert these toNone
where possible.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sea-serpent-0.4.0.tar.gz
.
File metadata
- Download URL: sea-serpent-0.4.0.tar.gz
- Upload date:
- Size: 44.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a947a7031de1e9c4d23198da90ae9c2a95d4ed133eb520a45b72a12eb9de27c3 |
|
MD5 | aa278bb82b82b28abd9475df9b72f0fa |
|
BLAKE2b-256 | 17a9e308b5fef5b76721bd93968c62fb96bab7754446e20bc7dd183c7aeceb42 |
File details
Details for the file sea_serpent-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: sea_serpent-0.4.0-py3-none-any.whl
- Upload date:
- Size: 45.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 955be3153f7e188f29117ca39cbefd3adc176b5e2e38ab5d8814421281c37434 |
|
MD5 | 8328653f4e364d6d3df79380f051b09b |
|
BLAKE2b-256 | d975e38361c97e8adff90034b8b63ae18227ce432e29f3c8676e4c2d97aaed99 |