Skip to main content

SEAM: Meta-explanations for interpreting sequence-based deep learning models

Project description

SEAM: systematic explanation of attribution-based mechanisms for regulatory genomics

PyPI version Downloads Documentation Status

SEAM (Systematic Explanation of Attribution-based for Mechanisms) is a Python suite to use meta-explanations to interpret sequence-based deep learning models for regulatory genomics data. For installation instructions, tutorials, and documentation, please refer to the SEAM website, https://seam-nn.readthedocs.io/. For an extended discussion of this approach and its applications, please refer to our paper:

  • Seitz, E.E., McCandlish, D.M., Kinney, J.B., and Koo P.K. Deciphering the determinants of mechanistic variation in regulatory sequences. bioRxiv (2025). (unpublished)

Installation:

With Anaconda sourced, create a new environment via the command line:

conda create --name seam

Next, activate this environment via conda activate seam, and install the following packages:

pip install seam-nn

Finally, when you are done using the environment, always exit via conda deactivate.

Notes

SEAM has been tested on Mac and Linux operating systems. Typical installation time on a normal computer is less than 1 minute.

If you have any issues installing SEAM, please see:

For issues installing SQUID, the package used for sequence generation and inference, please see:

Older DNNs may require inference via Tensorflow 1.x or related packages in conflict with SEAM defaults. Users will need to run SEAM piecewise within separate environments:

  1. Tensorflow 1.x environment for generating in silico sequence-function-mechanism dataset
  2. Tensorflow 2.x environment for applying SEAM to explain in silico sequence-function-mechanism dataset

Usage:

SEAM provides a simple interface that takes as input a sequence-based deep-learning model (e.g., a DNN), which is used as an oracle to generate an in silico sequence-function-mechanism dataset representing a localized region of sequence space. SEAM uses a meta-explanation framework to interpret the in silico sequence-function-mechanism dataset, deciphering the determinants of mechanistic variation in regulatory sequences.

API figure: To be done.

Examples

Google Colab examples for applying SEAM on previously-published deep learning models are available at the following links:

Expected run time for the "Figure 2. Local library with hierarchical clustering | DeepSTARR" demo (above) is ~3.6 minutes using Google Colab T4 GPU.

Python script examples are provided in the examples/ folder for locally running SEAM and exporting outputs to file. Additional dependencies for these examples may be required and outlined at the top of each script. Examples include:

  • To be done.

Citation:

If this code is useful in your work, please cite our paper.

bibtex TBD

License:

Copyright (C) 2023–2025 Evan Seitz, David McCandlish, Justin Kinney, Peter Koo

The software, code sample and their documentation made available on this website could include technical or other mistakes, inaccuracies or typographical errors. We may make changes to the software or documentation made available on its web site at any time without prior notice. We assume no responsibility for errors or omissions in the software or documentation available from its web site. For further details, please see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seam_nn-0.2.5.tar.gz (83.7 kB view details)

Uploaded Source

Built Distribution

seam_nn-0.2.5-py3-none-any.whl (96.7 kB view details)

Uploaded Python 3

File details

Details for the file seam_nn-0.2.5.tar.gz.

File metadata

  • Download URL: seam_nn-0.2.5.tar.gz
  • Upload date:
  • Size: 83.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for seam_nn-0.2.5.tar.gz
Algorithm Hash digest
SHA256 81db4f048926f55f82f34d9e47a089f66222ef5ddbe9f3f11445bdbe3f9d370c
MD5 52069ccca0618a3e9ed8e705242ba5dc
BLAKE2b-256 b7b6cb8b9d8e5421e3b13fca9d3b53f55201eee7a248475dc6629d3aecfd5395

See more details on using hashes here.

File details

Details for the file seam_nn-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: seam_nn-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 96.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for seam_nn-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b8cfdcdb524b03ab4be24b6a2993b930afe83065dec33fe6e958900522677e2d
MD5 b64a83b5670a32f975928ce6afb973d6
BLAKE2b-256 51ee3da5f486a302f5cb3708111ee45f6e43a41b42f2d2884fdc880d63050898

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page