Skip to main content

SEAM: Meta-explanations for interpreting sequence-based deep learning models

Project description

SEAM: systematic explanation of attribution-based mechanisms for regulatory genomics

PyPI version Downloads Documentation Status

SEAM (Systematic Explanation of Attribution-based for Mechanisms) is a Python suite to use meta-explanations to interpret sequence-based deep learning models for regulatory genomics data. For installation instructions, tutorials, and documentation, please refer to the SEAM website, https://seam-nn.readthedocs.io/. For an extended discussion of this approach and its applications, please refer to our paper:

  • Seitz, E.E., McCandlish, D.M., Kinney, J.B., and Koo P.K. Deciphering the determinants of mechanistic variation in regulatory sequences. bioRxiv (2025). (unpublished)

Installation:

With Anaconda sourced, create a new environment via the command line:

conda create --name seam

Next, activate this environment via conda activate seam, and install the following packages:

pip install seam-nn

Finally, when you are done using the environment, always exit via conda deactivate.

Notes

SEAM has been tested on Mac and Linux operating systems. Typical installation time on a normal computer is less than 1 minute.

If you have any issues installing SEAM, please see:

For issues installing SQUID, the package used for sequence generation and inference, please see:

Older DNNs may require inference via Tensorflow 1.x or related packages in conflict with SEAM defaults. Users will need to run SEAM piecewise within separate environments:

  1. Tensorflow 1.x environment for generating in silico sequence-function-mechanism dataset
  2. Tensorflow 2.x environment for applying SEAM to explain in silico sequence-function-mechanism dataset

Usage:

SEAM provides a simple interface that takes as input a sequence-based deep-learning model (e.g., a DNN), which is used as an oracle to generate an in silico sequence-function-mechanism dataset representing a localized region of sequence space. SEAM uses a meta-explanation framework to interpret the in silico sequence-function-mechanism dataset, deciphering the determinants of mechanistic variation in regulatory sequences.

API figure: To be done.

Examples

Google Colab examples for applying SEAM on previously-published deep learning models are available at the following links:

Expected run time for the "Figure 2. Local library with hierarchical clustering | DeepSTARR" demo (above) is ~3.6 minutes using Google Colab T4 GPU.

Python script examples are provided in the examples/ folder for locally running SEAM and exporting outputs to file. Additional dependencies for these examples may be required and outlined at the top of each script. Examples include:

  • To be done.

Citation:

If this code is useful in your work, please cite our paper.

bibtex TBD

License:

Copyright (C) 2023–2025 Evan Seitz, David McCandlish, Justin Kinney, Peter Koo

The software, code sample and their documentation made available on this website could include technical or other mistakes, inaccuracies or typographical errors. We may make changes to the software or documentation made available on its web site at any time without prior notice. We assume no responsibility for errors or omissions in the software or documentation available from its web site. For further details, please see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seam_nn-0.3.5.tar.gz (88.4 kB view details)

Uploaded Source

Built Distribution

seam_nn-0.3.5-py3-none-any.whl (98.8 kB view details)

Uploaded Python 3

File details

Details for the file seam_nn-0.3.5.tar.gz.

File metadata

  • Download URL: seam_nn-0.3.5.tar.gz
  • Upload date:
  • Size: 88.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for seam_nn-0.3.5.tar.gz
Algorithm Hash digest
SHA256 838a7544a801af408a66f2e798f7c2f8e9a6f7ca8b918013b7743fcfc4cb5b23
MD5 2b43219c5c82e24bb1cc41ef90bcd50b
BLAKE2b-256 3ca3dbbe7fedb7a3e5f80ab714c2532c77ade7bde69efb1bf2e2a1da60d9edfd

See more details on using hashes here.

File details

Details for the file seam_nn-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: seam_nn-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 98.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for seam_nn-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c71ad580e525e9cdcdb86a53d1346b42832d473c8cd64ce8cb51ee46e3cd2a8b
MD5 064e4ea0852adb01df974987d8969806
BLAKE2b-256 f720d2965b48e45a14981428a86b968a9cbb283f2ce126bf098abf75299611ff

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page