Skip to main content

An HPV integration sites detection tool for targeted capture sequencing data

Project description

Documentation Status License PyPI version

Host Downloads
PyPI Downloads

SearcHPV

An HPV integration point detection tool for targeted capture sequencing data

Introdution

  • SearcHPV detects HPV fusion sites on both human genome and HPV genome
  • SearcHPV is able to provide locally assembled contigs for each integration events. It will report at least one and at most two contigs for each integration sites. The two contigs will provide information captured for left and right sides of the event.

Getting started

  1. Required resources
  • Unix like environment
  1. Download and install Firstly, download and install the required resources.

    1. Download Anaconda >=4.11.0: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html#install-linux-silent

    2. Download the "environment.yaml" file under this repository

    3. Creat conda environment for SearcHPV:

      conda env create -f [your_path]/environment.yaml
      
      

      This command will automatically set up all the third-party tools and packages required for SearcHPV and install latest version of SearcHPV. The name of the environment is "searcHPV".

      You can check the packages and tools in this environment by:

      conda list -n searcHPV
      
      

      You can update the environment by:

      conda env update -f [your_path]/environment.yaml
      
      
  2. Usage

SearcHPV have four main steps. You could either run it start-to-finish or run it step-by-step.

  • Before running SearcHPV, active the conda environment:
conda activate searcHPV

If you are running commands in a bash script, start with:

#!/bin/bash
source ~/anaconda3/etc/profile.d/conda.sh;
conda activate searcHPV; 
#[searcHPV commands...]

Note: Please check your path of "conda.sh" if you did not install Anaconda in the home directory.

  • Usage of searcHPV:
searcHPV <options> ...
  • Standard options:
 -fastq1 <str>  sequencing data: fastq/fq.gz file
 -fastq2 <str>  sequencing data: fastq/fq.gz file
 -humRef <str>  human reference genome: fasta file
 -virRef <str>  HPV reference genome: fasta file
  • Optional options:
-h, --help      show this help message and exit
-window <int>   the length of region searching for informative reads, default=300
-output <str>   output directory, default "./"
-alignment      run the alignment step, step1
-genomeFusion   call the genome fusion points, step2
-assemble local assemble for each integration event, step3
-hpvFusion call the HPV fusion points, step4
-clusterWindow <int> the length of window of clustering integration sites,default=100
-gz             if fastq files are in gz format
-poly(dn) N     poly(n), n*d(A/T/C/G), will report low confidence if contig contains poly(n), default=20
-index          index the original human and virus reference files, default=False

Note: If you've already indexed the virus and human reference files for BWA, Samtools, Picard, you do not need to add the "-index" option, especailly when you are running for a batch of samples that share the same virus and human reference files and you do not want to spend time on indexing references every time running a sample. The commands for indexing the virus and human reference files:

#activate SearcHPV conda environment first to make sure using the correct versions of tools
ref = '[path_of_your_reference_file]'
bwa index {ref}
samtools faidx {ref}
picard CreateSequenceDictionary R={ref} O={ref.replace('.fa','.dict')
  1. Examples:

    1. Run it start-to-finish and submit a SBATCH job:

      #!/bin/bash
      #SBATCH --job-name=searcHPV
      #SBATCH --mail-user=wenjingu@umich.edu
      #SBATCH --mail-type=BEGIN,END
      #SBATCH --cpus-per-task=1
      #SBATCH --nodes=1
      #SBATCH --ntasks-per-node=8
      #SBATCH --mem=40gb
      #SBATCH --time=100:00:00
      #SBATCH --account=XXXXX
      #SBATCH --partition=standard
      #SBATCH --output=searcHPV.log
      #SBATCH --error=searcHPV.err
      source ~/anaconda3/etc/profile.d/conda.sh;
      conda activate searcHPV;      
      searcHPV -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz -index;
      
    2. Run it step-by-step:

      searchHPV -alignment -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz -index
      searchHPV -genomeFusion -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      searchHPV -assemble -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      searchHPV -hpvFusion -fastq1 Sample_81279.R1.fastq.gz -fastq2 Sample_81279.R2.fastq.gz -humRef hs37d5.fa -virRef HPV.fa -output /home/scratch/HPV_fusion/Sample_81279 -gz
      
      

      Note: if run it step-by-step, please make sure the output directories for all steps are the same.

Output

  1. Alignment: the marked dupliaction alignment bam file and customized reference genome.\
  2. Genome Fusion Point Calling: orignal callset, filtered callset, filtered clustered callset.\
  3. Assemble: supportive reads, contigs for each integration events (unfiltered).\
  4. HPV fusion Point Calling: alignment bam file for contigs againt human and HPV genome.\ Final outputs are under the folder "call_fusion_virus": summary of all the integration events : "HPVfusionPointContig.txt" contig sequences for all the integration events: "ContigsSequence.fa"

Citation

SearcHPV: a novel approach to identify and assemble human papillomavirus-host genomic integration events in cancer --- Accepted by Cancer

Contact

wenjingu@umich.edu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

searcHPV-1.0.15.tar.gz (24.0 kB view details)

Uploaded Source

Built Distributions

searcHPV-1.0.15-py3.8.egg (43.8 kB view details)

Uploaded Source

searcHPV-1.0.15-py3-none-any.whl (24.2 kB view details)

Uploaded Python 3

File details

Details for the file searcHPV-1.0.15.tar.gz.

File metadata

  • Download URL: searcHPV-1.0.15.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.15.tar.gz
Algorithm Hash digest
SHA256 66b927da7b6ad998ae1825ef9058753740b4d77e7de1f96e82101a11e0a6591d
MD5 3dc0d1a6c3d35a6b3f9cf28143dbf6a8
BLAKE2b-256 733bd36bf7f7a2a5d5245a5c3360954bfcaa8eeac7952612f9e230c7e7866023

See more details on using hashes here.

Provenance

File details

Details for the file searcHPV-1.0.15-py3.8.egg.

File metadata

  • Download URL: searcHPV-1.0.15-py3.8.egg
  • Upload date:
  • Size: 43.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.15-py3.8.egg
Algorithm Hash digest
SHA256 c82a4e63d296b6bcfc09d43b2dad2eb8d452b54113ef48de32248d2ee01c8d9d
MD5 49dff361414c62ca2c053944f43ed8aa
BLAKE2b-256 c837fedf53067a32ac6de37abf5e57ec357a37b3f03f7bf5a2be2e4d04ac2c2f

See more details on using hashes here.

Provenance

File details

Details for the file searcHPV-1.0.15-py3-none-any.whl.

File metadata

  • Download URL: searcHPV-1.0.15-py3-none-any.whl
  • Upload date:
  • Size: 24.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.3 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8

File hashes

Hashes for searcHPV-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 2a45f0b369b429b11716f4d31b5364b5272b63f267d4c22e41d24b9126f4b573
MD5 bdfec92b8fc807d8bc4d4253c66b93e9
BLAKE2b-256 9e65928284eaee9d57c16d29c096f9fee1628db2e798c6450d1bd84046f86298

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page