Skip to main content

Create polar plots to display seasonal trends in time series data.

Project description

Seasonality polar plots

pip install season-polar-plots

This is a package to create polar plots for displaying seasonal trends in time series data. Requires

  • matplotlib (3.5.1)
  • numpy (1.19.2)
  • pandas (1.3.5)
  • seaborn (0.11.2)
  • scipy (1.6.0)

1. Read data into SeasonData class:

>>> from season_polar_plots import SeasonData

SeasonData(data, year_start, year_end, t_res)

Parameters
data pandas Series or single column DataFrame with datetime index
year_start (int) start year of period to be analyzed
year_end (int) end year of period to be analyzed
t_res (str) 'daily' or 'monthly': temporal resolution. Monthly values can be aggregated from daily values if 'monthly' is chosen (see sp_plot() and get_mgrid() function)

2. Plot function:

self.sp_plot(mode = 'all', label=None ,rd_years = True, col = 'viridis_r', a = 1, psize = None, pmarker = None, nylabels = 10, off = 0, rlab_angle = 15, linreg = False, start_month = 1)

Parameters
label (str) label for time series variable
mode (str) 'all' uses all data points; daily resolution: 'min' or 'max' filter time series on annual extreme values; monthly resolution: 'sum', 'mean' / 'min', 'max' aggregate / filter data for each month
rd_years (bool) as default, years are plotted in radius direction; rd_years=False plots variable in radius direction
col (str) color gradient (default 'viridis_r')
a (float) transparency alpha (0-1)
psize (float) marker size for daily data points
pmarker (MarkerStyle) marker style for daily data points
nylabels (int) number of (year) labels in radius direction
off (int or float) off-set from circle center
rlab_angle (float) angle of the radius axis labels
linreg (bool) if True plots linear regression (day in year ~ year) in polar projection (only for daily extreme values)
start_month (int) start month for linear regression

Returns: Plot; if linreg=True prints R² and p-values for slope and intercept

Obtain annual extreme values from daily time series:

self.get_ev( mode)

Parameters
mode (str) 'min' or 'max': filter time series on annual extreme values

Returns: DataFrame (containing nr of day in year of extreme values, extreme values)

Obtain aggregated / filtered monthly values:

self.get_mgrid(mode)

Parameters
mode (str) 'all' if data is already in monthly resolution; 'sum', 'mean' / 'min', 'max' aggregate / filter data for each month

Returns: DataFrame (containing monthly data)

3. Von-Mises distribution (ML fit with scipy):

self.von_mises(mode, plot = True, print_par = True, bins = 15, col_hist = 'b', col_vm ='r', off = 0.1, a = 1, rwidth = 0.8)

Parameters
mode (str) 'all' to use all data points, 'min' or 'max' to filter on extreme values
plot (bool) if True plots the data as circular histogram and fitted von-Mises distribution
print_par (bool) if True prints the fitted von-Mises parameters kappa and mu
bins (int) number of bins for histogram
col_hist (str) color of the histogram
col_vm (str) color of the fitted von Mises distribution
off (float) off-set from circle center
a (float) transparency alpha (0-1)
rwidth (float) relative width of histogram bins

Returns: Plot; kappa, mu, mu_nday

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

season_polar_plots-0.0.4.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

season_polar_plots-0.0.4-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file season_polar_plots-0.0.4.tar.gz.

File metadata

  • Download URL: season_polar_plots-0.0.4.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for season_polar_plots-0.0.4.tar.gz
Algorithm Hash digest
SHA256 d9cb34118b56b734caad2a9213075efa0cb8b408323ab16b6e2b81f9499cf71b
MD5 ffa9608fdcdd8f6bd438d99735cc15ef
BLAKE2b-256 f82550d5fc88b8be0395a75f0350797a974139208723a78b3eac6889509f0a06

See more details on using hashes here.

File details

Details for the file season_polar_plots-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for season_polar_plots-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0c706d4545ac9aaaffa6bd178b3849029849e45a6a29530ae9b7440d1c362e48
MD5 23989ff70ac0c317539a3c20e99a9565
BLAKE2b-256 13078ab654064489ca4c14b0cbb05bd65cb566cd5d8ab869ce4db68ae75be8bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page