Skip to main content

Create polar plots to display seasonal trends in time series data.

Project description

Seasonality polar plots

pip install season-polar-plots

This is a package to create polar plots for displaying seasonal trends in time series data. Requires

  • matplotlib (3.5.1)
  • numpy (1.19.2)
  • pandas (1.3.5)
  • seaborn (0.11.2)
  • scipy (1.6.0)

1. Read data into SeasonData class:

>>> from season_polar_plots import SeasonData

SeasonData(data, year_start, year_end, t_res)

Parameters
data pandas Series or single column DataFrame with datetime index
year_start (int) start year of period to be analyzed
year_end (int) end year of period to be analyzed
t_res (str) 'daily' or 'monthly': temporal resolution. Monthly values can be aggregated from daily values if 'monthly' is chosen (see sp_plot() and get_mgrid() function)

2. Plot function:

self.sp_plot(mode = 'all', label=None ,rd_years = True, col = 'viridis_r', a = 1, psize = None, pmarker = None, nylabels = 10, off = 0, rlab_angle = 15, linreg = False, start_month = 1)

Parameters
label (str) label for time series variable
mode (str) 'all' uses all data points; daily resolution: 'min' or 'max' filter time series on annual extreme values; monthly resolution: 'sum', 'mean' / 'min', 'max' aggregate / filter data for each month
rd_years (bool) as default, years are plotted in radius direction; rd_years=False plots variable in radius direction
col (str) color gradient (default 'viridis_r')
a (float) transparency alpha (0-1)
psize (float) marker size for daily data points
pmarker (MarkerStyle) marker style for daily data points
nylabels (int) number of (year) labels in radius direction
off (int or float) off-set from circle center
rlab_angle (float) angle of the radius axis labels
linreg (bool) if True plots linear regression (day in year ~ year) in polar projection (only for daily extreme values)
start_month (int) start month for linear regression

Returns: Plot; if linreg=True prints R² and p-values for slope and intercept

Obtain annual extreme values from daily time series:

self.get_ev( mode)

Parameters
mode (str) 'min' or 'max': filter time series on annual extreme values

Returns: DataFrame (containing nr of day in year of extreme values, extreme values)

Obtain aggregated / filtered monthly values:

self.get_mgrid(mode)

Parameters
mode (str) 'all' if data is already in monthly resolution; 'sum', 'mean' / 'min', 'max' aggregate / filter data for each month

Returns: DataFrame (containing monthly data)

3. Von-Mises distribution (ML fit with scipy):

self.von_mises(mode, plot = True, print_par = True, bins = 15, col_hist = 'b', col_vm ='r', off = 0.1, a = 1, rwidth = 0.8)

Parameters
mode (str) 'all' to use all data points, 'min' or 'max' to filter on extreme values
plot (bool) if True plots the data as circular histogram and fitted von-Mises distribution
print_par (bool) if True prints the fitted von-Mises parameters kappa and mu
bins (int) number of bins for histogram
col_hist (str) color of the histogram
col_vm (str) color of the fitted von Mises distribution
off (float) off-set from circle center
a (float) transparency alpha (0-1)
rwidth (float) relative width of histogram bins

Returns: Plot; kappa, mu, mu_nday

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

season_polar_plots-0.0.5.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

season_polar_plots-0.0.5-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file season_polar_plots-0.0.5.tar.gz.

File metadata

  • Download URL: season_polar_plots-0.0.5.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for season_polar_plots-0.0.5.tar.gz
Algorithm Hash digest
SHA256 ee15889320c6cbc583592f7249978e094f9f64d0f56d91ba853694099c46980c
MD5 05d04ff2f962adb2f329fff3bae72b06
BLAKE2b-256 23fc0266554ad0d9d1cb3c24e3a836c8a86e734958d9931736bd5bdc09e4a32b

See more details on using hashes here.

File details

Details for the file season_polar_plots-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for season_polar_plots-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ba9a626b7b6e30f2fc7e145f2bc46c0526b53108c85af20aca957bebf25ed04e
MD5 1e618df1ee182e229d2afbac02d1531f
BLAKE2b-256 cbefb7e90233648513a25deb1d17bc058b44cf78805cf28e6303624232271738

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page