Skip to main content

Estimate trend and seasonal effects in a timeseries

Project description

Robustly estimate and remove trend and periodicity in a timeseries.

Seasonal can recover sharp trend and period estimates from noisy timeseries data with only a few periods. It is intended for estimating season, trend, and level when initializing structural timeseries models like Holt-Winters. Input samples are assumed evenly-spaced from a continuous real-valued signal with noise but no anomalies.

The seasonal estimate will be a list of period-over-period averages at each seasonal offset. You may specify a period length, or have it estimated from the data. The latter is an interesting capability of this package.

Trend removal in this package is in service of isolating and estimating the periodic (non-trend) variation. A lowpass smoothing of the data is removed from the original series, preserving original seasonal variation. Detrending is accomplishd by a coarse fitted spline, mean or median filters, or a fitted line.

See https://github.com/welch/seasonal/README.md for details on installation, API, theory, and examples.

Dependencies

  • package: numpy, scipy
  • extras: pandas, matplotlib

Project details


Release history Release notifications

This version
History Node

0.3.1

History Node

0.3.0

History Node

0.2.0

History Node

0.1.0

History Node

0.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
seasonal-0.3.1-py2.py3-none-any.whl (18.1 kB) Copy SHA256 hash SHA256 Wheel 2.7 Jun 11, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page