Skip to main content

No-Code/Low-code MLOps: A faster way to build and share datasets, models, and deployments.

Project description

Welcome to SeeMe.ai

SeeMe.ai is a no/low code MLOps platform aiming to be the simplest way you create, use, and share AI.

You can use SeeMe.ai without any code to automate the full AI lifecycle of your datasets and models.

The Python SDK gives easy access to all of your datasets, models, jobs, ... on the platform.

Installation

$ pip install seeme

Getting started

from seeme import Client

cl = Client()

# -- Registration --

my_username =    # example: "my_username"
my_email =       # example: "jan.vandepoel@seeme.ai"
my_password =    # example: "supersecurepassword"
my_firstname =   # example: "Jan"
my_name =        # example: "Van de Poel"

cl.register(
    username=my_username, 
    email=my_email, 
    password=my_password, 
    firstname=my_firstname, 
    name=my_name
)

# -- Log in --

cl.login(username, password)

# -- Log out --

cl.logout()

Datasets

Manage the entire lifecyle of your datasets:

  • create
  • manage
  • version
  • label
  • annotate
  • import/export
from seeme import Dataset, DatasetContentType

# -- Get datasets --
datasets = cl.get_datasets()

my_dataset = Dataset(
    name= "Cloud classifier",
    description= "Classify clouds from pictures",
    default_splits= True, # If `True`, adds 'train', 'valid', and 'test' default_splits
    content_type= DatasetContentType.IMAGES,
    multi_label= False
}

my_dataset = cl.create_dataset(my_dataset)

Checkout the dataset documentation to see all possibilities and detailed guides.

Models

Manage the entire lifecycle of your AI models:

  • create
  • manage
  • version
  • converst
  • predicti
  • import/export
from seeme import Model, Framework, ApplicationType

# -- Get models --
models = cl.get_models()

# -- Application ID --
application_id = cl.get_application_id(
    base_framework=Framework.PYTORCH,
    framework=Framework.FASTAI,
    base_framework_version=str(torch.__version__),
    framework_version=str(fastai.__version__),
    application=ApplicationType.IMAGE_CLASSIFICATION
)

# -- Create model --
model_name = "Cloud classifier"
description = "Classify clouds from images"

my_model = Model(
    name= model_name,
    description= description,
    application_id= application_id,
    auto_convert= True # Automatically converts your model to ONNX, CoreML, and TensorFlow Lite.
)

my_model = cl.create_model(my_model)

model_file_location = "my_exported_model.pkl"

cl.upload_model(my_model.id, model_file_location)

image_location = "my_image.png"

cl.inference(my_model.id, image_location)

Checkout the [model] documentation](https://docs.seeme.ai/python-sdk/#models) to see all possibilities and detailed guides.

Jobs

Schedule training, validation, and model conversion jobs with a simple command:

from seeme import Job, JobItem, JobType, ValueType

jobs = cl.get_jobs()

job = Job(
    name= "v3 image classifier",
    description= "A new dataset for an improved model",
    application_id= application_id,
    job_type= JobType.TRAINING,
    dataset_id= dataset_id,
    dataset_version_id= datset_version_id,
    model_id= model_id,
    model_version_id= model_version_id,
    items= [
      JobItem(
        name= "image_size",
        value= "224",
        value_type= ValueType.INT
      ),
      JobItem(
        name= "arch",
        value= "resnet50",
        value_type= ValueType.TEXT
      )
    ]
)

Applications

SeeMe.ai automates the full lifecycle of data and models for a wide range of AI applications, such as:

  • image classification
  • object detection
  • structured data
  • language models
  • multi lingual text classification
  • object character recognition (OCR)
  • named entity recognition (NER)

for a number of AI frameworks and their versions:

For a full list of frameworks and their versions:

# -- Get applications --
all_applications = cl.get_applications()

print(all_applications)

SDK Documentation

For more detailed SDK documentation see https://docs.seeme.ai.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

seeme-0.26.0-py3-none-any.whl (15.3 kB view details)

Uploaded Python 3

File details

Details for the file seeme-0.26.0-py3-none-any.whl.

File metadata

  • Download URL: seeme-0.26.0-py3-none-any.whl
  • Upload date:
  • Size: 15.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for seeme-0.26.0-py3-none-any.whl
Algorithm Hash digest
SHA256 25f20ada62d670e5707202028dc954e82712970e16290b10cc0a74120168e761
MD5 1a2dfd045855d3de8783a31b8b5dcc6e
BLAKE2b-256 1c664fbf254ff5b4d5c649f831b40fdc5c434dc473541fda98388d7a071eed7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page