No-Code/Low-code MLOps: A faster way to build and share datasets, models, and deployments.
Project description
Welcome to SeeMe.ai
SeeMe.ai is a no/low code MLOps platform aiming to be the simplest way you create, use, and share AI.
You can use SeeMe.ai without any code to automate the full AI lifecycle of your datasets and models.
The Python SDK gives easy access to all of your datasets, models, jobs, ... on the platform.
Installation
$ pip install seeme
Getting started
from seeme import Client
cl = Client()
# -- Registration --
my_username = # example: "my_username"
my_email = # example: "jan.vandepoel@seeme.ai"
my_password = # example: "supersecurepassword"
my_firstname = # example: "Jan"
my_name = # example: "Van de Poel"
cl.register(
username=my_username,
email=my_email,
password=my_password,
firstname=my_firstname,
name=my_name
)
# -- Log in --
cl.login(username, password)
# -- Log out --
cl.logout()
Datasets
Manage the entire lifecyle of your datasets:
- create
- manage
- version
- label
- annotate
- import/export
from seeme import Dataset, DatasetContentType
# -- Get datasets --
datasets = cl.get_datasets()
my_dataset = Dataset(
name= "Cloud classifier",
description= "Classify clouds from pictures",
default_splits= True, # If `True`, adds 'train', 'valid', and 'test' default_splits
content_type= DatasetContentType.IMAGES,
multi_label= False
}
my_dataset = cl.create_dataset(my_dataset)
Checkout the dataset documentation to see all possibilities and detailed guides.
Models
Manage the entire lifecycle of your AI models:
- create
- manage
- version
- converst
- predicti
- import/export
from seeme import Model, Framework, ApplicationType
# -- Get models --
models = cl.get_models()
# -- Application ID --
application_id = cl.get_application_id(
base_framework=Framework.PYTORCH,
framework=Framework.FASTAI,
base_framework_version=str(torch.__version__),
framework_version=str(fastai.__version__),
application=ApplicationType.IMAGE_CLASSIFICATION
)
# -- Create model --
model_name = "Cloud classifier"
description = "Classify clouds from images"
my_model = Model(
name= model_name,
description= description,
application_id= application_id,
auto_convert= True # Automatically converts your model to ONNX, CoreML, and TensorFlow Lite.
)
my_model = cl.create_model(my_model)
model_file_location = "my_exported_model.pkl"
cl.upload_model(my_model.id, model_file_location)
image_location = "my_image.png"
cl.inference(my_model.id, image_location)
Checkout the [model] documentation](https://docs.seeme.ai/python-sdk/#models) to see all possibilities and detailed guides.
Jobs
Schedule training, validation, and model conversion jobs with a simple command:
from seeme import Job, JobItem, JobType, ValueType
jobs = cl.get_jobs()
job = Job(
name= "v3 image classifier",
description= "A new dataset for an improved model",
application_id= application_id,
job_type= JobType.TRAINING,
dataset_id= dataset_id,
dataset_version_id= datset_version_id,
model_id= model_id,
model_version_id= model_version_id,
items= [
JobItem(
name= "image_size",
value= "224",
value_type= ValueType.INT
),
JobItem(
name= "arch",
value= "resnet50",
value_type= ValueType.TEXT
)
]
)
Applications
SeeMe.ai automates the full lifecycle of data and models for a wide range of AI applications, such as:
- image classification
- object detection
- structured data
- language models
- multi lingual text classification
- object character recognition (OCR)
- named entity recognition (NER)
for a number of AI frameworks and their versions:
For a full list of frameworks and their versions:
# -- Get applications --
all_applications = cl.get_applications()
print(all_applications)
SDK Documentation
For more detailed SDK documentation see https://docs.seeme.ai.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file seeme-0.26.0-py3-none-any.whl
.
File metadata
- Download URL: seeme-0.26.0-py3-none-any.whl
- Upload date:
- Size: 15.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25f20ada62d670e5707202028dc954e82712970e16290b10cc0a74120168e761 |
|
MD5 | 1a2dfd045855d3de8783a31b8b5dcc6e |
|
BLAKE2b-256 | 1c664fbf254ff5b4d5c649f831b40fdc5c434dc473541fda98388d7a071eed7d |