Skip to main content

Image segmentation tools specially for blood vessels.

Project description

About

This is a collection of image segmentation projects adjusted for fundus blood vessel segmentation.

1. unet_keras result:

2. unet_torch result:

4. mrsg_torch result (sota):

Run

Provide four flavors:

Module How to run Model weights location Notebooks
model.unet_keras run_training.py, run_testing.py test/test_best_weights.h5 1. U-Net - Introduction.ipynb, 2. Fundus Blood Vessel Segmentation.ipynb
model.unet_torch train.py, test.py weights/checkpoint.pth README.md
model.multiple_torch all codes are inside .ipynb files best_binclass_model.h5, best_multiclass_model.h5 1. binary segmentation (camvid).ipynb and 2. multiclass segmentation (camvid).ipynb
model.mrsg_torch python train.py --cfg lib/All.yaml, python inference.py --lib/DRIVE.yaml results/test/ALL/model/*.pth README.md

Credits

The following github projects are used:

Module based on url
model.unet_keras Retina blood vessel segmentation with a convolution neural network (U-net) https://github.com/orobix/retina-unet
model.unet_torch Retina-Blood-Vessel-Segmentation-in-PyTorch https://github.com/nikhilroxtomar/Retina-Blood-Vessel-Segmentation-in-PyTorch
model.multiple_torch Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. https://github.com/qubvel/segmentation_models
model.mrsg_torch Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) https://github.com/Limingxing00/Retinal-Vessel-Segmentation-ISBI2022/

Todo

make a thorough refactor; vessel region detection

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seg-0.0.1.tar.gz (53.3 MB view details)

Uploaded Source

Built Distribution

seg-0.0.1-py3-none-any.whl (53.3 MB view details)

Uploaded Python 3

File details

Details for the file seg-0.0.1.tar.gz.

File metadata

  • Download URL: seg-0.0.1.tar.gz
  • Upload date:
  • Size: 53.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for seg-0.0.1.tar.gz
Algorithm Hash digest
SHA256 57eed765e1d18d55c185da2f093f771791adc8dc53af786320f514a3c9b8cc63
MD5 e831cc774ac28c52c4ff518c1df35877
BLAKE2b-256 b6d69482f6cd8ebbeb71b7d83b0fdbec1e5b0d91947343295943a004be5829cb

See more details on using hashes here.

File details

Details for the file seg-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: seg-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 53.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for seg-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 eabbfa5023d40d978e6cb5c2bf3cd295ebed7f62db30edc7607eea63b453d1b6
MD5 ad108d491eccd8cbe9e51557264d59de
BLAKE2b-256 eb753bc48ea2c55f432c6510574feec1ba25ff17374a0e243e21fcb1e8e785ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page