Conditional Random Field Implementation for segmentation models as used in Deeplab-v2
Project description
Fully Connected CRF
This repo implements CRF as described in Deeplab paper it takes about 0.2 seconds per image. Following image is taken form DeepLab paper
Requirements
Python <= 3.6
pydensecrf
cv2
matplotlib
gray2color
It takes following arguments. For details visit project page.
⚠ Zero pixels are consdered background
img_path : path to an image,
Format [H, W, 3]; values ranging from [0, 255]
model_op_path : path model output of the same input image.
Format [H, W]; values ranging from [0, num_of_classes]
num_of_classes : number of classes in a dataset e.g. in cityscape has 30 classes
clr_op : color the output or not a bool
pallet2use : see https://pypi.org/project/gray2color/ for details
img_w : for resizing image and mask to same size default is 1024
img_h : for resizing image and mask to same size default is 512
apperance_kernel : The PairwiseBilateral term in CRF a list of values in order [sxy, srgb, compat]
default values are [8, 164, 100]
spatial_kernel : The PairwiseGaussian term in CRF a list of values in order [sxy, compat]
default values are [3, 10]
from seg_crf import Seg_CRF
img_path='D:/Anaconda/Image_analysis/cat.png'
model_op_path='D:/Anaconda/Image_analysis/mask.png'
crf = Seg_CRF(img_path, model_op_path, 2, img_w=1024, img_h=512, clr_op=True, pallet2use ='cityscape')
gray, rgb = crf.start()
plt.imshow(rgb)
Appearance and Spatial Kernel
# Default Values are
apperance_kernel = [8, 164, 100] # PairwiseBilateral [sxy, srgb, compat]
spatial_kernel = [3, 10] # PairwiseGaussian [sxy, compat]
# or if you want to to specify seprately for each XY direction and RGB color channel then
apperance_kernel = [(1.5, 1.5), (64, 64, 64), 100] # PairwiseBilateral [sxy, srgb, compat]
spatial_kernel = [(0.5, 0.5), 10] # PairwiseGaussian [sxy, compat]
# Use like
crf = Seg_CRF(img_path, model_op_path, 2, img_w=1024, img_h=512,
apperance_kernel=apperance_kernel, spatial_kernel=spatial_kernel,
clr_op=True, pallet2use ='cityscape')
gray, rgb = crf.start()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
seg_crf-1.0.0.tar.gz
(3.9 kB
view details)
Built Distribution
File details
Details for the file seg_crf-1.0.0.tar.gz
.
File metadata
- Download URL: seg_crf-1.0.0.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de71eae55aab234cac3264dce7eda9f6ee7f2660f067e464d1c8e32e1eb56170 |
|
MD5 | 2c6270c05cd38a479a2e11bb499d4b58 |
|
BLAKE2b-256 | ea600f3bb956e31dcdc95d02ea948ae5311e004b3f83073f4c18e5c39448a6b1 |
File details
Details for the file seg_crf-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: seg_crf-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8cf243bb22855f42f2d6fb897197e2c3c683f925a9f3d2e01d360587502106d |
|
MD5 | dbf66ae1e37493a8c115578b8d0314cf |
|
BLAKE2b-256 | 2aba64cebadd27c92907a7b8cb33fd4320253f87eaeba1c8f8bebe285b41ab70 |