Skip to main content

Automated one-dimensional subsequence segmentation

Project description

seg1d

Automated segmentation of one-dimensional (1D) data

Overview

seg1d is an open-source Python package for the automated segmentation of one-dimensional data using one or more reference segments. The segmentation process allows users to apply various methods and parameters for the process through weighted features (i.e., additional data attributed to the same set) in a rolling correlation size-varying window of a reference(s) to a target. Correlations can be averaged across the references and a peak detection algorithm finds the most prominent segments. Non-overlapping segments are identified and a clustering algorithm groups the most similar segments within the target. The package was developed for movement sciences but should be useful to anyone interested in extracting correlated subsequences from a dataset.

seg1d

Example of the segmentation algorithm using a portion of a sine wave. The initial reference segment is found, along with any additional segments.

Documentation

Full documentation available online: https://cadop.github.io/seg1d/

Alternatives

There are existing libraries that provide clustering and similarity measures for querying subseries data.

  • The UCR Suite (Ultrafast subsequence search under both Dynamic Time Warping (DTW) and Euclidean Distance (ED))

  • tslearn(Machine learning tools for the analysis of time series)

Quickstart

Dependencies

Currently tested on Python 3.8 on Ubuntu 18.04 and Windows 10. (Should work on Python 3.6 and above)

Required Packages:

numpy>=1.18, scipy>=1.4.1, sklearn>=0.22, numba>=0.48

For documentation:

sphinx>=2

Installation

pip install seg1d

Example usage

The documentation contains examples using data of both generated data (e.g., sine wave) and real-world examples (i.e., motion capture data).

To quickly get started, try importing the seg1d module and using the provided sample data.

import seg1d 

#retrieve the sample reference, target, and weight data
r,t,w = seg1d.sampleData()
# define scaling percentage and rolling step size
minW, maxW, step  = 70, 150, 1 
#call the segmentation algorithm
a = seg1d.segmentData(r,t,w,minW,maxW,step)
print(a)
# Should output an array equal to:
# array([[207.       , 240.       ,   0.9124224],
#        [342.       , 381.       ,   0.8801901],
#        [ 72.       , 112.       ,   0.8776795]])
# where each array is of form [start index, end index, correlation]

For more examples, please refer to the full documention.

Project Info

This project was used for the following paper:

(Accepted) Schwartz, Mathew; Pataky, Todd; Sui Geok Karen, CHUA; Wei Tech, ANG; and Donnelly, Cyril (2020) "AUTOMATED MULTI-FEATURE SEGMENTATION OF TREADMILL RUNNING," ISBS Proceedings Archive: Vol. 37 : Iss. 2 , Article 1.

Community

Issues and feature requests should be submitted on github.

Please check the Community Guidelines for further details on contributing.

Credits

Code written and developed by Mathew Schwartz (New Jersey Institute of Technology).

Data used in sample provided by Precision Rehab, Rehabilitation Research Institute of Singapore.

Project was funded in part by the Agency for Science, Technology and Research (A*STAR), Nanyang Technological University (NTU) and the National Health Group (NHG) (RRG3: 2019/19002).

License

Please refer to the full LICENSE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seg1d-0.1.0.tar.gz (35.0 kB view details)

Uploaded Source

Built Distribution

seg1d-0.1.0-py3-none-any.whl (333.8 kB view details)

Uploaded Python 3

File details

Details for the file seg1d-0.1.0.tar.gz.

File metadata

  • Download URL: seg1d-0.1.0.tar.gz
  • Upload date:
  • Size: 35.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for seg1d-0.1.0.tar.gz
Algorithm Hash digest
SHA256 830afa7488f9d9aa567c0bd464644a5266b61c23f500491fd5e0c05e7d4a74ae
MD5 ff8cf91e548281dbaaf03ba815fa2e03
BLAKE2b-256 56f5cc048f5eefba1c62b5c3eb8d73e6dad633239a79216d8eea5f50ad8892ec

See more details on using hashes here.

File details

Details for the file seg1d-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: seg1d-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 333.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for seg1d-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3d5a7a88be8b5b6841180dc61ca1dbb7297019f82253c1d3792d58d5c2fe6901
MD5 de187074eb9c6b328e69711bcafb3b4d
BLAKE2b-256 83c32e992b78ce465450afc2d8056d8f27de78b8a5f0b012f4aa8c4f41cbd6c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page