Segment and count object using SAM
Project description
How to use the package
Example usecase:
import os
import cv2
from tqdm import tqdm
from segcount.segment_and_count import ObjectCounter
DEVICE = 'cpu' # or 'cuda:0'
SAM_MODEL_TYPE = 'vit_h'
def run(img_folder, output_object = 'object_detected', output_planks = 'oplanks_detected'):
os.makedirs(os.path.join(img_folder, output_object), exist_ok=True)
os.makedirs(os.path.join(img_folder, output_planks), exist_ok=True)
all_imgs = [file for file in os.listdir(img_folder) if file.split('.')[-1] in ['jpg', 'png']]
counter = ObjectCounter(device=DEVICE, sam_model_type=SAM_MODEL_TYPE)
for img_file in tqdm(all_imgs):
path_read = os.path.join(img_folder, img_file)
path_save = os.path.join(img_folder, output_object, img_file) + '.output_object.jpg'
img = cv2.imread(path_read)
obj = counter.detect_object(img)
cv2.imwrite(path_save, obj)
print(counter.count_planks(obj))
if __name__ == '__main__':
img_folder = '<path to your images folder>'
run(img_folder)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
segcount-0.0.1.tar.gz
(5.3 kB
view details)
Built Distribution
segcount-0.0.1-py3-none-any.whl
(11.3 kB
view details)
File details
Details for the file segcount-0.0.1.tar.gz
.
File metadata
- Download URL: segcount-0.0.1.tar.gz
- Upload date:
- Size: 5.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 202a828efabd5114bfa157c6250c7716398c638e290e9b97b2a8d1eafdd79d55 |
|
MD5 | 5d7d985557c9caf283f334679a6db554 |
|
BLAKE2b-256 | 2459f4b02550a940151934bdc3bfa0042598b73677847688864e471087b8f478 |
File details
Details for the file segcount-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: segcount-0.0.1-py3-none-any.whl
- Upload date:
- Size: 11.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d0d91a34af8b1168e109bc3e0623dfab46d7371bc521b7fc7b0fc9083d9f806 |
|
MD5 | 2525cb33828efb9ebd2a3de65a62af4e |
|
BLAKE2b-256 | 00d68b8ff74f8334d93ac7173c4e73ad8361e61f9644075d2984a313e8b4ce08 |