Skip to main content

Image segmentation models training of popular architectures.

Project description

segmentation_models_trainer

Python application maintainer DOI

Framework to train semantic segmentation models on TensorFlow using json files as input, as follows:

{
    "name": "test",
    "epochs": 4,
    "experiment_data_path": "/data/test",
    "checkpoint_frequency": 10,
    "warmup_epochs": 2,
    "use_multiple_gpus": false,
    "hyperparameters": {
        "batch_size": 16,
        "optimizer": {
            "name": "Adam",
            "config": {
                "learning_rate": 0.0001
            }
        }
    },
    "train_dataset": {
        "name": "train_ds",
        "file_path": "/data/train_ds.csv",
        "n_classes": 1,
        "dataset_size": 1000,
        "augmentation_list": [
            {
                "name": "random_crop",
                "parameters": {
                    "crop_width": 256,
                    "crop_height": 256
                }
            },
            {
                "name": "per_image_standardization",
                "parameters": {}
            }
        ],
        "cache": true,
        "shuffle": true,
        "shuffle_buffer_size": 10000,
        "shuffle_csv": true,
        "ignore_errors": true,
        "num_paralel_reads": 4,
        "img_dtype": "float32",
        "img_format": "png",
        "img_width": 512,
        "img_length": 512,
        "use_ds_width_len": false,
        "autotune": -1,
        "distributed_training": false
    },
    "test_dataset": {
        "name": "test_ds",
        "file_path": "/data/test_ds.csv",
        "n_classes": 1,
        "dataset_size": 200,
        "augmentation_list": [
            {
                "name": "random_crop",
                "parameters": {
                    "crop_width": 256,
                    "crop_height": 256
                }
            },
            {
                "name": "random_flip_left_right",
                "parameters": {}
            },
            {
                "name": "random_flip_up_down",
                "parameters": {}
            },
            {
                "name": "random_brightness",
                "parameters": {
                    "max_delta": 0.1
                }
            },
            {
                "name": "random_contrast",
                "parameters": {
                    "lower": 0.5,
                    "upper": 1.5
                }
            },
            {
                "name": "random_saturation",
                "parameters": {
                    "lower": 0.5,
                    "upper": 1.5
                }
            },
            {
                "name": "random_hue",
                "parameters": {
                    "max_delta": 0.01
                }
            },
            {
                "name": "per_image_standardization",
                "parameters": {}
            }
        ],
        "cache": true,
        "shuffle": true,
        "shuffle_buffer_size": 10000,
        "shuffle_csv": true,
        "ignore_errors": true,
        "num_paralel_reads": 4,
        "img_dtype": "float32",
        "img_format": "png",
        "img_width": 512,
        "img_length": 512,
        "use_ds_width_len": false,
        "autotune": -1,
        "distributed_training": false
    },
    "model": {
        "description": "test case",
        "backbone": "resnet18",
        "architecture": "Unet",
        "activation": "sigmoid",
        "use_imagenet_weights": true
    },
    "loss": {
        "class_name": "bce_dice_loss",
        "config": {},
        "framework": "sm"
    },
    "callbacks": {
        "items": [
            {
                "name": "TensorBoard",
                "config": {
                    "update_freq": "epoch"
                }
            },
            {
                "name": "BackupAndRestore",
                "config": {}
            },
            {
                "name": "ReduceLROnPlateau",
                "config": {
                    "monitor": "val_loss",
                    "factor": 0.2,
                    "patience": 5,
                    "min_lr": 0.00000000001
                }
            },
            {
                "name": "ModelCheckpoint",
                "config": {
                    "monitor": "iou_score",
                    "save_best_only": false,
                    "save_weights_only": false,
                    "verbose":1
                }
            },
            {
                "name": "ImageHistory",
                "config": {
                    "draw_interval": 1,
                    "page_size": 10
                }
            }
        ]
    },
    "metrics": {
        "items": [
            {
                "class_name": "iou_score",
                "config": {},
                "framework": "sm"
            },
            {
                "class_name": "precision",
                "config": {},
                "framework": "sm"
            },
            {
                "class_name": "recall",
                "config": {},
                "framework": "sm"
            },
            {
                "class_name": "f1_score",
                "config": {},
                "framework": "sm"
            },
            {
                "class_name": "f2_score",
                "config": {},
                "framework": "sm"
            },
            {
                "class_name": "MeanIoU",
                "config": {
                    "num_classes": 2
                },
                "framework": "tf.keras"
            }
        ]
    }
}

Training usage:

python train.py --pipeline_config_path=my_experiment.json

Citing:

@software{philipe_borba_2020_4060390,
  author       = {Philipe Borba},
  title        = {phborba/segmentation\_models\_trainer: First Release},
  month        = sep,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v0.1},
  doi          = {10.5281/zenodo.4060390},
  url          = {https://doi.org/10.5281/zenodo.4060390}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

segmentation_models_trainer-0.2.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

segmentation_models_trainer-0.2-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file segmentation_models_trainer-0.2.tar.gz.

File metadata

  • Download URL: segmentation_models_trainer-0.2.tar.gz
  • Upload date:
  • Size: 21.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0

File hashes

Hashes for segmentation_models_trainer-0.2.tar.gz
Algorithm Hash digest
SHA256 656aad1f1903cedf4e5168738f06a99cdb721121b025dc638f7a111d72cf086c
MD5 b2611e3de24eeaf8e698ef0adad11bb4
BLAKE2b-256 d7e640fd17547a55afe02a19f066726fcb6ade050e49bb269cf34f95fa132a5a

See more details on using hashes here.

File details

Details for the file segmentation_models_trainer-0.2-py3-none-any.whl.

File metadata

  • Download URL: segmentation_models_trainer-0.2-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0

File hashes

Hashes for segmentation_models_trainer-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2cfd4a00fcaa9bb2647085d18e63c569be96f330e4afb8b17ced6d7b09ee6165
MD5 21bab02d873a77621753f5e0e9b13237
BLAKE2b-256 b44f4f72089982caedc4cace7e6da971d2d83db8a6b52cf295a9e36694e4eb45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page