Image segmentation models training of popular architectures.
Project description
segmentation_models_trainer
Framework to train semantic segmentation models on TensorFlow using json files as input, as follows:
{
"name": "test",
"epochs": 4,
"experiment_data_path": "/data/test",
"checkpoint_frequency": 10,
"warmup_epochs": 2,
"use_multiple_gpus": false,
"hyperparameters": {
"batch_size": 16,
"optimizer": {
"name": "Adam",
"config": {
"learning_rate": 0.0001
}
}
},
"train_dataset": {
"name": "train_ds",
"file_path": "/data/train_ds.csv",
"n_classes": 1,
"dataset_size": 1000,
"augmentation_list": [
{
"name": "random_crop",
"parameters": {
"crop_width": 256,
"crop_height": 256
}
},
{
"name": "per_image_standardization",
"parameters": {}
}
],
"cache": true,
"shuffle": true,
"shuffle_buffer_size": 10000,
"shuffle_csv": true,
"ignore_errors": true,
"num_paralel_reads": 4,
"img_dtype": "float32",
"img_format": "png",
"img_width": 512,
"img_length": 512,
"use_ds_width_len": false,
"autotune": -1,
"distributed_training": false
},
"test_dataset": {
"name": "test_ds",
"file_path": "/data/test_ds.csv",
"n_classes": 1,
"dataset_size": 200,
"augmentation_list": [
{
"name": "random_crop",
"parameters": {
"crop_width": 256,
"crop_height": 256
}
},
{
"name": "random_flip_left_right",
"parameters": {}
},
{
"name": "random_flip_up_down",
"parameters": {}
},
{
"name": "random_brightness",
"parameters": {
"max_delta": 0.1
}
},
{
"name": "random_contrast",
"parameters": {
"lower": 0.5,
"upper": 1.5
}
},
{
"name": "random_saturation",
"parameters": {
"lower": 0.5,
"upper": 1.5
}
},
{
"name": "random_hue",
"parameters": {
"max_delta": 0.01
}
},
{
"name": "per_image_standardization",
"parameters": {}
}
],
"cache": true,
"shuffle": true,
"shuffle_buffer_size": 10000,
"shuffle_csv": true,
"ignore_errors": true,
"num_paralel_reads": 4,
"img_dtype": "float32",
"img_format": "png",
"img_width": 512,
"img_length": 512,
"use_ds_width_len": false,
"autotune": -1,
"distributed_training": false
},
"model": {
"description": "test case",
"backbone": "resnet18",
"architecture": "Unet",
"activation": "sigmoid",
"use_imagenet_weights": true
},
"loss": {
"class_name": "bce_dice_loss",
"config": {},
"framework": "sm"
},
"callbacks": {
"items": [
{
"name": "TensorBoard",
"config": {
"update_freq": "epoch"
}
},
{
"name": "BackupAndRestore",
"config": {}
},
{
"name": "ReduceLROnPlateau",
"config": {
"monitor": "val_loss",
"factor": 0.2,
"patience": 5,
"min_lr": 0.00000000001
}
},
{
"name": "ModelCheckpoint",
"config": {
"monitor": "iou_score",
"save_best_only": false,
"save_weights_only": false,
"verbose":1
}
},
{
"name": "ImageHistory",
"config": {
"draw_interval": 1,
"page_size": 10
}
}
]
},
"metrics": {
"items": [
{
"class_name": "iou_score",
"config": {},
"framework": "sm"
},
{
"class_name": "precision",
"config": {},
"framework": "sm"
},
{
"class_name": "recall",
"config": {},
"framework": "sm"
},
{
"class_name": "f1_score",
"config": {},
"framework": "sm"
},
{
"class_name": "f2_score",
"config": {},
"framework": "sm"
},
{
"class_name": "MeanIoU",
"config": {
"num_classes": 2
},
"framework": "tf.keras"
}
]
}
}
Training usage:
python train.py --pipeline_config_path=my_experiment.json
Citing:
@software{philipe_borba_2020_4060390,
author = {Philipe Borba},
title = {phborba/segmentation\_models\_trainer: First Release},
month = sep,
year = 2020,
publisher = {Zenodo},
version = {v0.1},
doi = {10.5281/zenodo.4060390},
url = {https://doi.org/10.5281/zenodo.4060390}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file segmentation_models_trainer-0.2.tar.gz.
File metadata
- Download URL: segmentation_models_trainer-0.2.tar.gz
- Upload date:
- Size: 21.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
656aad1f1903cedf4e5168738f06a99cdb721121b025dc638f7a111d72cf086c
|
|
| MD5 |
b2611e3de24eeaf8e698ef0adad11bb4
|
|
| BLAKE2b-256 |
d7e640fd17547a55afe02a19f066726fcb6ade050e49bb269cf34f95fa132a5a
|
File details
Details for the file segmentation_models_trainer-0.2-py3-none-any.whl.
File metadata
- Download URL: segmentation_models_trainer-0.2-py3-none-any.whl
- Upload date:
- Size: 34.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2cfd4a00fcaa9bb2647085d18e63c569be96f330e4afb8b17ced6d7b09ee6165
|
|
| MD5 |
21bab02d873a77621753f5e0e9b13237
|
|
| BLAKE2b-256 |
b44f4f72089982caedc4cace7e6da971d2d83db8a6b52cf295a9e36694e4eb45
|